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Summary

1. Basic information theory.

2. Decision trees.

3. Information theory and statistics.
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I. Basic Information theory
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WwWhy do we care?

Information theory

— Invented by Claude Shannon in 1948
A Mathematical Theory of Communication.
Bell System Technical Journal, October 1948.

— The "quantity of information” measured in “bits’ .
— The *“capacity of a transmission channel”.
— Data coding and data compression.

Information gain

— A derived concept.

— Quantify how much information we acquire about a phenomenon.
— A justification for the Kullback-Leibler divergence.
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The coding paradigm

Intuition
The quantity of information of a message is the length
of the smallest code that can represent the message.

Paradigm
— Assume there are n possible messages 1 =1...n.
— We want a signal that indicates the occurrence of one of them.
— We can transmit an alphabet of r symbols.
For instance a wire could carry r = 2 electrical levels.
— The code for message ¢ is a sequence of [; symbols.

Properties
— Codes should be uniquely decodable.
— Average code length for a message: > ' p;l;.
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Prefix codes

First symbol

— Messages 1 and 2 have codes one symbol long ([, =1).
— Messages 3 and 4 have codes two symbols long (I; = 2).
— Messages 5 and 6,have codes three symbols long (I; = 2).
— There is an unused three symbol code. That's inefficient.

Properties

— Prefix codes are uniquely decodable.

— There are trickier kinds of uniquely decodable codes,
eg. ar— 0,0— 01,c+— 011 versus a — 0,b +— 10, c — 110.
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Kraft inequality

Uniquely decodable codes satisfy
n 1 i
>(;) <!
r=1 "
— All uniquely decodable codes satisfy this inequality.

— If integer code lengths [; satisfy this inequality,
there exists a prefix code with such code lengths.

Consequences
— If some messages have short codes, others must have long codes.
— To minimize the average code length:
- give short codes to high probability messages.
- give long codes to low probability messages.
— Equiprobable messages should have similar code lengths.

Léon Bottou 7/31 COS 424 - 4/6/2010



Kraft inequality for prefix codes

Prefix codes satisfy Kraft inequality
)

I~ _ 1 1\
> Zi:r <r << ;<r> <1

All uniquely decodable codes satisfy Kraft inequality
— Proof must deal with infinite sequences of messages.

Given integer code lengths [;:

— Build a balanced r-ary tree of depth [ = max; [;.

— For each message, prune one subtree at depth ;.

— Kraft inequality ensures that there will be enough branches
left to define a code for each message.
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Redundant codes

Assume Zr‘li <1

1
— There are leftover branches in the tree.

— T here are codes that are not used, or
— There are multiple codes for each message.

For best compression, Zr‘li —1

1
— This is not always possible with integer code lengths ;.
— But we can use this to compute a lower bound.
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Lower bound for the average code length

Choose code lengths [; such that

min [, subject to r=1, ;>0
11...17122.:]9Z ! y Z :

— Define s; =7, that is, [; = — log,(s;).
— Maximize C =) p; log,(s;) subject to > ;s; =1
— We get 6'50 Pi__ — Constant, that is s; o p;.

s;log(r
— Replacing in tﬁe constralnt gives s; = p;.

T herefore

l; = —log,(p;) and szl— szlogrpz

Fractional code lengths
— What does it mean to code a message on 0.5 symbols?
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Arithmetic coding

— An infinite sequence of messages 1,19, ...

can be viewed as

a number x = 0.272923 ... Iin base n.
— An infinite sequence of symbols cy,c9,... can be viewed as
a number y = 0.cicocs ... in base r.
y
A A
ot x=0.0. 0.10... 0.120... 0.1220...
y
Y
’.
S x=0.1... 0.11... 0.121... 0.1221...
>
1
S x=0.2. 0.12... 0122 0.1222...
1
S x=0.3. 0.13... 0.123... 0.1223...
\/
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Arithmetic coding

y
b
S 0.0... 0.10... 0.120... 0.1220...
> Y
a 0.1... 0.11... 0.121... 0.1221... g
S o
~ —»
0_1 0.2... > 0.12... 0.122... 0.1222...
5_’1 0.3... 0.13... 0.123... 0.1223...
To encode a sequence of L messages iy,...,17.
L
— The code y must belong to an interval of size || p;,.
k=1
L
— It is sufficient to specify [(ijiy...i7) = [Zlogr(pikﬂ digits of v.
k=1
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Arithmetic coding

To encode a sequence of L messages iy,...,17].
L
— It is sufficient to specify [(ijis...if) = | — Zlogr(pikﬂ digits of y.
k=1
— The average code length per message is
- ;
Z DPiqy - - 'piL Z o 1Og7‘<plk>
1119...0], k=1
L—o0 log,.( pz
Z pzl pZLZ d .

1119...1],
L

= —Z Z sz'h)zpz'kbgpz’k = —Zpilogpi
i

=1 dy..ig\ip h#k ip=1

Arithmetic coding reaches the lower bound when L — oo.
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Quantity of information

Optimal code length: I; = —log,.(p;)-
Optimal expected code length: > p;l; = — > p;log,(p;)-

Receiving a message x with probability p.:
— The acquired information is h(x) = —loga(px) bits.
— An informative message is a surprising message!

Expecting a message X with distribution py...pp,:
— The expected information is H(X) = — ) .-y Pz 10ga(pz) bits.
— This is also called entropy.

These are two distinct definitions!
Note how we switched to logarithms in base two.

This is a multiplicative factor: logs(p) = log,.(p) logs(r).
Choosing base 2 defines a unit of information: the bit.
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Mutual information

— Expected information:

— Joint information:
— Mutual information:

Hair color
Dark Auburn Red Blond Marginal | Information
S Brown 68 119 26 7 37.2%
g Hazel 15 54 14 10 15.7% 1.83
B Green 5 29 14 16 10.8% :
o Blue 20 84 17 94 36.3%
Marginal 18.2% 48.3% 12.0% 21.5%
Information 1.80
Hair color
Dark Auburn Red Blond
5 Brown 11.5% 20.1% 4.4% 1.2%
g Hazel 2.5% 9.1% 2.4% 1.7%
3 Green 0.8% 4.9% 2.4% 2.7%
o Blue 3.4% 14.2% 2.9% 15.9%
Joint information 3.45
Mutual information 0.18
H(X) = =Y, P(X =1i) log P(X =1)
H(X,Y) = >, ;P(X =i,Y =j) log P(X =i,V
[(X,)Y) = HX)+ HY) - H(X,Y)
H(X)
1(X,Y)
H(Y
H(X,Y)
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II. Decision trees
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Car mileage

Predict which cars have better mileage than 19mpg.

mpg cyl disp hp weight accel year name
15.0 8 350.0 165.0 3693 11.5 70 buick skylark 320
18.0 8 318.0 150.0 3436 11.0 70 plymouth satellite
15.0 8 429.0 198.0 4341 10.0 70 ford galaxie 500
14.0 8 454.0 220.0 4354 9.0 70 chevrolet impala
15.0 8 390.0 190.0 3850 8.5 70 amc ambassador dpl
14.0 8 340.0 160.0 3609 8.0 70 plymouth cuda 340
18.0 4 121.0 112.0 2933 14.5 72 volvo 145e

22.0 4 121.0 76.00 2511 18.0 72 volkswagen 411
21.0 4 120.0 87.00 2979 19.5 72 peugeot 504

26.0 4 96.0 69.00 2189 18.0 72 renault 12

22.0 4 122.0 86.00 2310 16.0 72 ford pinto

28.0 4 97.0 92.00 2288 17.0 72 datsun 510

13.0 8 440.0 215.0 4735 11.0 73 chrysler new yorker
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Questions

Many questions can distinguish cars

— How many cylinders? (3,4,5,8)
— Displacement greater than 200 cu in? (yes, no)

— Displacement greater than x cu in? (yes, no)

— Weight greater than z Ibs? (yes, no)
— Model name longer than x characters (yes, no)

— etc. ..

Which question brings the most information about the task?

— Build contingency table.
— Compare mutual informations I(Question, Mpg > 19).

Possible answers

ansA | ansB ansC | ansD
mpg>19| 12 23 65 5
mpg<19| 18 12 4 4
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Mutual information

Consider a contingency table, Tij-

— 1 <7 <p refers to the question answers X.
— 1 <1 <n refers to the target values Y.

ansA | ansB | ansC | ansD
mpg>19 12 23 65 5
mpg<19| 18 12 4 4
Let x;e = ? | Tij, Tej = iq Tjj, and  Tee =
Mutual information:
I(X,)Y) = —-HX,)Y)+ HX)+ H(Y)
Tij\  Tij Toj, Lej
= lo — lo
izjx.. gxoo ;xoo gflfoo

12; 1 Lij-
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Decision stump

1a9 How many cylinders?
3 éﬁ R 8
— The question generates a partition of the examples.
— Now we can repeat the process for each node:

— build the contingency tables.
— pick the most informative question.
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Decision trees

How many cylinders?

3 8
O] 4 Weight>2800 Ibs?
6 /\
4
Accel>12s é ) 22)
Y N‘ HP>110?
wN

e

Until all leafs contain a single car.
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Decision trees

Q a9 How many cylinders?

@ éAccepmj\tHPMw? i Welght>2800 Ibs?

Y

é@‘@

Y

é 'y ééé @5'5@

Then label each leaf with class M PG > 19 or M PG < 19.
We can now say if a car does more than 19mpg by asking a few questions.

But that is learning by heart!
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Pruning the decision tree

We can label each node with its dominant class M PG > 19 or M PG < 19.

A Misclassification

T he usual picture.

Should we use a validation set?

Which stopping criterion?
— the node depth?

Depth’?> — the node population?

1/NodePopulation?
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The ¢ independence test

We met this test when studying correspondence analysis (lecture 10).
n

) "

Hair color
Dark Auburn Red Blond
] Brown 68 119 26 7 220
3 Hazel 15 54 14 10 93
@ Green 5 29 14 16 64 o
ar Blue 20 84 17 94 215
- A 108 286 71 127 592
p n
B LieLe ]
= @ e Z% x--—ZZ% i =
; Loeo
J=1 i=1 j=1

If the rows and coQIumns variables were independent
X2 = § j( i — Fij) would asymptotically follow a y? distribution

- FEi .

i with (n — 1)(p — 1) degrees of freedom.
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Pruning a decision tree with the ,? test

We want to prune nodes when the contingency table suggests that
there is no dependence between the question and the target class.

(2ij — Eyj)°

— Compute X2 = Z
1]

for each node.

— Prune if 1 — FXQ(X) > p.

Parameter p could be picked by cross-validation.
But choosing p = 0.05 often works well enough.
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Conclusion

Good points

— Decision trees run quickly.

— Decision trees can handle all kinds of input variables.
— Decision trees can be interpreted relatively easily.

— Decision trees can handle lots of irrelevant features.

Bad points
— Decision trees are moderately accurate.
— Small changes in the training set can lead to very different trees.

(were we speaking about interpretability. . .)

Notes
— Other names for decision trees: ID3, C4.5, CART.

— Regression tree when the target is continuous.
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III. Information theory and statistics
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Revisiting decision trees : likelihoods

The tree as a model of P(Y|X)
— Estimate P(Y|X) by the target frequencies in the leaf for X.
— We can compute the likelihood of the data in this model.

Likelihood gain when splitting a node
— Let Tij be the contingency table for a node and a question.
— Splitting the node with a question increases the likelihood:

.CC
log L fter — l0g Lpe fore = Z ;o 4 Z Lie

XTji X
Zajw log 1y e sz.log

Leoo Lej

Z% x] valogx.] Z%'

Lie

xz.

Compare with slide 19|
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Revisiting decision trees : log loss

The tree as a discriminant function
— Define f(X) = 1og1 PX where py is the frequency of positive examples

—PX in the leaf corresponding to X.

l—px\ _

log (1 —1=2x) — ify—1
g (1+e—yf<X>) _ ) los oy oglpx)  ify
log 1—18—;& = —log(l —py) if y=—1

Log loss reduction when splitting a node
— Let Tij be the contingency table for a node and a question.

Rbefore - Rafter = = E xzo log =+ E § Lgj log Zj.
J o1

.fC.. .flj.

[
. To .
= injlogl—Zx.jlog / —in.logL'
Iy Leoe J Leoe P Leoe

Compare with slides [19] and 28|.
Note: regression trees use the mean squared |0ss.
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Kullback Leibler divergence

Definition
— KL divergence between a “true distribution” P(X)
and an “estimated distribution” FPy(X).

P(x) )
D(P|Py) = / log P log 5
Py(z) Z ()
= =) P(x)logPy(z) — —ZP ) log P(x
X
Ha;?]r)mx H‘orpt

Hopt . Optimal coding length for X.

Happrox © EXpected code length for X when the code is designed for
distribution F) instead of the true distribution P.

— The KL divergence measures the excess coding bits when the
code is optimized for the estimated distribution instead of the
true distribution.
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Maximum Likelihood

Minimize KL divergence

min D(P||Py) = /log Plz) dP(x) <= max/long(:C) dP(x)

0 Py(x) 0
Maximize Log Likelihood
1 n
— E log Py(x;
max 2 og Py(x;)

The log likelihood estimates Constant — D(P||FPy) using the training set.

— Maximizing the likelihood minimizes an estimate of the
excess coding bits obtained by coding the training set.

— One hopes to achieve a good coding performance on future data.

The Vapnik-Chervonenkis theory gives confidence intervals for the deviation

( / log Py.(x) dP(x)) _ (% Zn:log Pg*(x,;)>
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