Information Theory, Statistics, and Decision Trees

Léon Bottou

COS 424 - 4/6/2010

Summary

- 1. Basic information theory.
- 2. Decision trees.
- 3. Information theory and statistics.

I. Basic Information theory

Why do we care?

Information theory

- Invented by Claude Shannon in 1948
 - A Mathematical Theory of Communication.
 - Bell System Technical Journal, October 1948.
- The "quantity of information" measured in "bits".
- The "capacity of a transmission channel".
- Data coding and data compression.

Information gain

- A derived concept.
- Quantify how much information we acquire about a phenomenon.
- A justification for the Kullback-Leibler divergence.

The coding paradigm

Intuition

The quantity of information of a message is the length of the smallest code that can represent the message.

Paradigm

- Assume there are n possible messages $i = 1 \dots n$.
- We want a signal that indicates the occurrence of one of them.

5/31

- We can transmit an alphabet of r symbols. For instance a wire could carry r=2 electrical levels.
- The code for message i is a sequence of l_i symbols.

Properties

- Codes should be uniquely decodable.
- Average code length for a message: $\sum_{x=1}^{n} p_i l_i$.

Prefix codes

- Messages 1 and 2 have codes one symbol long $(l_i = 1)$.
- Messages 3 and 4 have codes two symbols long $(l_i = 2)$.
- Messages 5 and 6, have codes three symbols long $(l_i = 2)$.
- There is an unused three symbol code. That's inefficient.

Properties

- Prefix codes are uniquely decodable.
- There are trickier kinds of uniquely decodable codes, e.g. $a\mapsto 0, b\mapsto 01, c\mapsto 011$ versus $a\mapsto 0, b\mapsto 10, c\mapsto 110$.

Kraft inequality

Uniquely decodable codes satisfy

$$\sum_{x=1}^{n} \left(\frac{1}{r}\right)^{l_i} \le 1$$

- All uniquely decodable codes satisfy this inequality.
- If integer code lengths l_i satisfy this inequality, there exists a prefix code with such code lengths.

Consequences

- If some messages have short codes, others must have long codes.
- To minimize the average code length:
 - give short codes to high probability messages.
 - give long codes to low probability messages.
- Equiprobable messages should have similar code lengths.

Kraft inequality for prefix codes

Prefix codes satisfy Kraft inequality

All uniquely decodable codes satisfy Kraft inequality

- Proof must deal with infinite sequences of messages.

Given integer code lengths l_i :

- Build a balanced r-ary tree of depth $l = \max_i l_i$.
- For each message, prune one subtree at depth l_i .
- Kraft inequality ensures that there will be enough branches left to define a code for each message.

8/31

Redundant codes

Assume
$$\sum_{i} r^{-l_i} < 1$$

- There are leftover branches in the tree.
- There are codes that are not used, or
- There are multiple codes for each message.

For best compression, $\sum_{i} r^{-l_i} = 1$

- This is not always possible with integer code lengths l_i .
- But we can use this to compute a lower bound.

Lower bound for the average code length

Choose code lengths l_i such that

$$\min_{l_1...l_n} \sum_i p_i \, l_i \quad \text{subject to} \quad \sum_i r^{-l_i} = 1, \quad l_i > 0$$

- Define $s_i = r^{-l_i}$, that is, $l_i = -\log_r(s_i)$.
- Maximize $C = \sum p_i \log_r(s_i)$ subject to $\sum_i s_i = 1$
- We get $\frac{\partial C}{\partial s_i} = \frac{p_i}{s_i \log(r)} = Constant$, that is $s_i \propto p_i$.
- Replacing in the constraint gives $s_i = p_i$.

Therefore

$$l_i = -\log_r(p_i)$$
 and $\sum_i p_i \, l_i = -\sum_i p_i \log_r(p_i)$

Fractional code lengths

- What does it mean to code a message on 0.5 symbols?

Arithmetic coding

- An infinite sequence of messages i_1, i_2, \ldots can be viewed as a number $x = 0.i_1i_2i_3\ldots$ in base n.
- An infinite sequence of symbols c_1, c_2, \ldots can be viewed as a number $y = 0.c_1c_2c_3\ldots$ in base r.

Arithmetic coding

To encode a sequence of L messages i_1, \ldots, i_L .

- The code y must belong to an interval of size $\prod_{k=1}^{L} p_{i_k}$.
- It is sufficient to specify $l(i_1i_2\dots i_L) = \lceil \sum_{k=1}^L \log_r(p_{i_k}) \rceil$ digits of y.

Arithmetic coding

To encode a sequence of L messages i_1, \ldots, i_L .

- It is sufficient to specify $l(i_1i_2\dots i_L)=ig\lceil -\sum_{k=1}^L \log_r(p_{i_k})ig
 ceil$ digits of y.
- The average code length per message is

$$\begin{split} &\frac{1}{L} \sum_{i_1 i_2 \dots i_L} p_{i_1} \dots p_{i_L} \left[\sum_{k=1}^L - \log_r(p_{i_k}) \right] \\ &\stackrel{L \to \infty}{\longrightarrow} \sum_{i_1 i_2 \dots i_L} p_{i_1} \dots p_{i_L} \sum_{k=1}^L \frac{\log_r(p_{i_k})}{L} \\ &= &\frac{1}{L} \sum_{k=1}^L \sum_{i_1 \dots i_L \setminus i_k} \left(\prod_{h \neq k} p_{i_h} \right) \sum_{i_k=1}^r p_{i_k} \log p_{i_k} \ = \ - \sum_i p_i \log p_i \end{split}$$

Arithmetic coding reaches the lower bound when $L \to \infty$.

Quantity of information

Optimal code length: $l_i = -\log_r(p_i)$.

Optimal expected code length: $\sum p_i l_i = -\sum p_i \log_r(p_i)$.

Receiving a message x with probability p_x :

- The acquired information is $h(x) = -log_2(p_x)$ bits.
- An informative message is a surprising message!

Expecting a message X with distribution $p_1 \dots p_n$:

- The expected information is $H(X) = -\sum_{x \in \mathcal{X}} p_x \log_2(p_x)$ bits.
- This is also called entropy.

These are two distinct definitions!

Note how we switched to logarithms in base two.

This is a multiplicative factor: $\log_2(p) = \log_r(p) \log_2(r)$.

Choosing base 2 defines a unit of information: the bit.

Mutual information

			Hair color					
			Dark	Auburn	Red	Blond	Marginal	Information
	or	Brown	68	119	26	7	37.2%	
	Eyes color	Hazel	15	54	14	10	15.7%	4.02
		Green	5	29	14	16	10.8%	1.83
		Blue	20	84	17	94	36.3%	
		Marginal	18.2%	48.3%	12.0%	21.5%		
Information			1.	80				

		Hair color				
		Dark	Auburn	Red	Blond	
or	Brown	11.5%	20.1%	4.4%	1.2%	
color	Hazel	2.5%	9.1%	2.4%	1.7%	
Eyes	Green	0.8%	4.9%	2.4%	2.7%	
Ē	Blue	3.4%	14.2%	2.9%	15.9%	

Joint information 3.45

Mutual information 0.18

- Expected information: $H(X) = -\sum_{i} P(X=i) \log P(X=i)$

- Joint information: $H(X,Y) = \sum_{i,j} \mathbb{P}(X=i,Y=j) \log P(X=i,Y=j)$

- Mutual information: $I(X,Y) = H(\tilde{X}) + H(Y) - H(X,Y)$

II. Decision trees

Car mileage

Predict which cars have better mileage than 19mpg.

mpg	cyl	disp	hp	weight	accel	year	name
15.0	8	350.0	165.0	3693	11.5	70	buick skylark 320
18.0	8	318.0	150.0	3436	11.0	70	plymouth satellite
15.0	8	429.0	198.0	4341	10.0	70	ford galaxie 500
14.0	8	454.0	220.0	4354	9.0	70	chevrolet impala
15.0	8	390.0	190.0	3850	8.5	70	amc ambassador dpl
14.0	8	340.0	160.0	3609	8.0	70	plymouth cuda 340
18.0	4	121.0	112.0	2933	14.5	72	volvo 145e
22.0	4	121.0	76.00	2511	18.0	72	volkswagen 411
21.0	4	120.0	87.00	2979	19.5	72	peugeot 504
26.0	4	96.0	69.00	2189	18.0	72	renault 12
22.0	4	122.0	86.00	2310	16.0	72	ford pinto
28.0	4	97.0	92.00	2288	17.0	72	datsun 510
13.0	8	440.0	215.0	4735	11.0	73	chrysler new yorker

. . .

Questions

Many questions can distinguish cars

- How many cylinders? (3,4,5,8)
- Displacement greater than 200 cu in? (yes, no)
- Displacement greater than x cu in? (yes, no)
- Weight greater than x lbs? (yes, no)
- Model name longer than x characters (yes, no)
- etc. . .

Which question brings the most information about the task?

- Build contingency table.
- Compare mutual informations I(Question, Mpg > 19).

	Possible answers							
	ansA ansB ansC ansD							
mpg>19	12	23	65	5				
mpg≤19	18	12	4	4				

Mutual information

Consider a contingency table, x_{ij} .

- $-1 \le j \le p$ refers to the question answers X.
- $-1 \le i \le n$ refers to the target values Y.

	ansA	ansB	ansC	ansD
mpg>19	12	23	65	5
mpg≤19	18	12	4	4

Let
$$x_{i\bullet} = \sum_{j=1}^p x_{ij}$$
, $x_{\bullet j} = \sum_{i=1}^n x_{ij}$, and $x_{\bullet \bullet} = \sum_{i=1}^n \sum_{j=1}^p x_{ij}$.

Mutual information:

$$I(X,Y) = -H(X,Y) + H(X) + H(Y)$$

$$= \sum_{ij} \frac{x_{ij}}{x_{\bullet\bullet}} \log \frac{x_{ij}}{x_{\bullet\bullet}} - \sum_{j} \frac{x_{\bullet j}}{x_{\bullet\bullet}} \log \frac{x_{\bullet j}}{x_{\bullet\bullet}} - \sum_{i} \frac{x_{i\bullet}}{x_{\bullet\bullet}} \log \frac{x_{i\bullet}}{x_{\bullet\bullet}}$$

Decision stump

- The question generates a partition of the examples.
- Now we can repeat the process for each node:
 - build the contingency tables.
 - pick the most informative question.

Decision trees

Until all leafs contain a single car.

Decision trees

Then label each leaf with class MPG>19 or $MPG\leq19$. We can now say if a car does more than 19mpg by asking a few questions. But that is learning by heart!

Pruning the decision tree

We can label each node with its dominant class MPG > 19 or $MPG \le 19$.

The usual picture.

Should we use a validation set?

Which stopping criterion?

- the node depth?
- the node population?

The χ^2 independence test

We met this test when studying correspondence analysis (lecture 10).

$$x_{i\bullet} = \sum_{j=1}^{p} x_{ij} \quad x_{\bullet j} = \sum_{i=1}^{n} x_{ij} \quad x_{\bullet \bullet} = \sum_{i=1}^{n} \sum_{j=1}^{p} x_{ij} \quad E_{ij} = \frac{x_{i\bullet} x_{\bullet j}}{x_{\bullet \bullet}}$$

If the rows and columns variables were independent

$$\mathcal{X}^2 = \sum_{ij} \frac{(x_{ij} - E_{ij})^2}{E_{ij}} \text{ would asymptotically follow a } \chi^2 \text{ distribution}$$
 with $(n-1)(p-1)$ degrees of freedom.

Pruning a decision tree with the χ^2 test

We want to prune nodes when the contingency table suggests that there is no dependence between the question and the target class.

– Compute
$$\mathcal{X}^2 = \sum_{ij} \frac{(x_{ij} - E_{ij})^2}{E_{ij}}$$
 for each node.

- Prune if
$$1 - F_{\chi^2}(X) > p$$
.

Parameter p could be picked by cross-validation.

But choosing p = 0.05 often works well enough.

Conclusion

Good points

- Decision trees run quickly.
- Decision trees can handle all kinds of input variables.
- Decision trees can be interpreted relatively easily.
- Decision trees can handle lots of irrelevant features.

Bad points

- Decision trees are moderately accurate.
- Small changes in the training set can lead to very different trees.
 (were we speaking about interpretability...)

26/31

Notes

- Other names for decision trees: ID3, C4.5, CART.
- Regression tree when the target is continuous.

III. Information theory and statistics

Revisiting decision trees: likelihoods

The tree as a model of P(Y|X)

- Estimate P(Y|X) by the target frequencies in the leaf for X.
- We can compute the likelihood of the data in this model.

Likelihood gain when splitting a node

- Let x_{ij} be the contingency table for a node and a question.
- Splitting the node with a question increases the likelihood:

$$\log L_{after} - \log L_{before} = \sum_{ij} x_{ij} \log \frac{x_{ij}}{x_{\bullet j}} - \sum_{i} x_{i\bullet} \log \frac{x_{i\bullet}}{x_{\bullet \bullet}}$$

$$= \sum_{ij} x_{ij} \log \frac{x_{ij} x_{\bullet \bullet}}{x_{\bullet \bullet} x_{\bullet j}} - \sum_{i} x_{i\bullet} \log \frac{x_{i\bullet}}{x_{\bullet \bullet}}$$

$$= \sum_{ij} x_{ij} \log \frac{x_{ij}}{x_{\bullet \bullet}} - \sum_{i} x_{\bullet j} \log \frac{x_{\bullet j}}{x_{\bullet \bullet}} - \sum_{i} x_{i\bullet} \log \frac{x_{i\bullet}}{x_{\bullet \bullet}}$$

Compare with slide 19.

Revisiting decision trees: log loss

The tree as a discriminant function

- Define $f(X) = \log \frac{p_X}{1 - p_X}$ where p_X is the frequency of positive examples in the leaf corresponding to X.

$$\log\left(1 + e^{-yf(X)}\right) = \begin{cases} \log\left(1 - \frac{1 - p_X}{p_X}\right) = -\log(p_X) & \text{if } y = 1\\ \log\left(1 - \frac{p_X}{1 - p_X}\right) = -\log(1 - p_X) & \text{if } y = -1 \end{cases}$$

Log loss reduction when splitting a node

- Let x_{ij} be the contingency table for a node and a question.

$$R_{before} - R_{after} = -\sum_{i} x_{i\bullet} \log \frac{x_{i\bullet}}{x_{\bullet\bullet}} + \sum_{j} \sum_{i} x_{ij} \log \frac{x_{ij}}{x_{\bullet j}}$$

$$= \sum_{ij} x_{ij} \log \frac{x_{ij}}{x_{\bullet\bullet}} - \sum_{j} x_{\bullet j} \log \frac{x_{\bullet j}}{x_{\bullet\bullet}} - \sum_{i} x_{i\bullet} \log \frac{x_{i\bullet}}{x_{\bullet\bullet}}$$

Compare with slides 19 and 28.

Note: regression trees use the mean squared loss.

Kullback Leibler divergence

Definition

– KL divergence between a "true distribution" P(X) and an "estimated distribution" $P_{\theta}(X)$.

$$D(P||P_{\theta}) = \int \log \frac{P(x)}{P_{\theta}(x)} dP(x) = \sum_{x} P(x) \log \frac{P(x)}{P_{\theta}(x)}$$
$$= -\sum_{x} P(x) \log \mathbb{P}_{\theta}(x) - \sum_{x} P(x) \log P(x)$$
$$H_{approx}$$
$$H_{opt}$$

 H_{opt} : Optimal coding length for X.

 H_{approx} : Expected code length for X when the code is designed for distribution P_{θ} instead of the true distribution P.

 The KL divergence measures the excess coding bits when the code is optimized for the estimated distribution instead of the true distribution.

Maximum Likelihood

Minimize KL divergence

$$\min_{\theta} D(P \| P_{\theta}) = \int \log \frac{P(x)}{P_{\theta}(x)} dP(x) \iff \max_{\theta} \int \log P_{\theta}(x) dP(x)$$

Maximize Log Likelihood

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(x_i)$$

The log likelihood estimates $Constant - D(P||P_{\theta})$ using the training set.

- Maximizing the likelihood minimizes an estimate of the excess coding bits obtained by coding the training set.
- One hopes to achieve a good coding performance on future data.

The Vapnik-Chervonenkis theory gives confidence intervals for the deviation

$$\left(\int \log P_{\theta^*}(x) dP(x)\right) - \left(\frac{1}{n} \sum_{i=1}^n \log P_{\theta^*}(x_i)\right)$$