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Léon Bottou

COS 424 – 4/1/2010



Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Summary

1. Maximizing margins.

2. Soft margins.

3. Kernels.

4. Kernels everywhere.
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The curse of dimensionality

Polynomial classifiers in dimension d

Discriminant function: f (x) = w>Φ(x) + b.

Degree Dim(Φ(x)) Φ(x)

1 d Φ(x) = [xi] 1≤i≤d
2 ≈ d2/2 Φ(x) += [xixj] 1≤i≤j≤d
3 ≈ d3/6 Φ(x) += [xixjxk] 1≤i≤j≤k≤d

. . .
n ≈ dn/n!

The number of parameters increases quickly.

Training such a classifier directly requires a number of examples

that increases just as quickly as the number of parameters.
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Beating the curse of dimensionality?

Capacity � number of parameters

Assume the patterns x1 . . .x2l are known beforehand.

The classes are unknown.

Let R = max ‖xi‖.

We say that a hyperplane

w>x + b w,x ∈ Rd ‖w‖ = 1

separates patterns with margin ∆ if

∀i = 1 . . . 2l |w>xi + b| ≥ ∆

The family of ∆-margin separating hyperplanes has

logN (F ,D) ≤ h log
2le

h
with h ≤ min

{
R2

∆2
, d

}
+ 1
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Maximizing margins

Patterns xi ∈ Rd, classes yi = ±1.

w

2∆

max
w,b,∆

∆ subject to ‖w‖ = 1 and ∀i yi(w
>xi + b) ≥ ∆
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Maximizing margins

Classic formulation

w

wx+b = +1

wx+b = −1

min
w,b
‖w‖2 subject to ∀i yi(w

>xi + b) ≥ 1

This is a quadratic programming problem with linear constraints.

Léon Bottou 7/46 COS 424 – 4/1/2010



Maximizing margins

Equivalence between the formulations

Let w′ =
w

∆
and b′ =

b

∆
.

Constraint yi(w
>xi + b) ≥ ∆ becomes yi(w

′>xi + b′) ≥ 1.

Problem max
w,b,∆

∆ subject to ‖w‖ = 1 becomes min
w′,b′
‖w′‖

Both discriminant functions w>x + b and w′>x + b′

describe the same decision boundary.
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Primal and dual formulation

Karush-Kuhn-Tucker theory

– Refined theory for convex otimization under constraints.

– Construct a dual optimization problem

whose constraints are simpler,

and whose solution is related to the solution we seek.
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Primal and dual formulation

Karush-Kuhn-Tucker theory

– Refined theory for convex otimization under constraints.

– Construct a dual optimization problem

whose constraints are simpler,

and whose solution is related to the solution we seek.

Primal formulation Dual formulation

Max margin
between classes

Min distance
between convex hulls

A

B

Léon Bottou 10/46 COS 424 – 4/1/2010



Dual formulation

Min distance
between convex hulls

A

B

– Point A:
∑
i∈Pos

βi xi subject to βi ≥ 0 and
∑
i∈Pos

βi = 1

– Point B:
∑
i∈Neg

βi xi subject to βi ≥ 0 and
∑
i∈Neg

βi = 1

– Vector BA:
∑
i

yi βi xi subject to βi ≥ 0,
∑
i

βi = 2, and
∑
i

yi βi = 0.
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Dual formulation

Min distance
between convex hulls

A

B

min
β

∑
ij

yiyj βiβj x>i xj subject to


∀i βi ≥ 0∑
i yiβi = 0∑
i βi = 2

Then w =
∑
i yi βi xi.

Then b is easy to find by projecting all examples on w.
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Dual formulation

Classic formulation

Min distance
between convex hulls

A

B

max
α

∑
i

αi −
1

2

∑
ij

yiyj αiαj x>i xj subject to

{
∀i αi ≥ 0∑
i yiαi = 0

This is equivalent with αi = βi∆
−2 but the proof is nontrivial.
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Support Vectors Machines

Min distance
between convex hulls

A

B

min
β

∑
ij

yiyj βiβj x>i xj subject to


∀i βi ≥ 0∑
i yiβi = 0∑
i βi = 2

The only non zero βi are those corresponding to support vectors.
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Leave-One-Out

Leave one out = n-fold cross-validation

– Compute classifiers fi using training set minus example (xi, yi).

– Estimate test misclassification rate as ELOO =
1

n

n∑
i=1

1I {yifi(xi) ≤ 0} .

Leave one out for maximal margin classifier

– Removing a non support vector does not change the classifier.

ELOO ≤
#support vectors

#examples

– The important quantity is not the dimension

but is the number of support vectors.
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Soft margins

When the examples are

not linearly separable,

the constraints yi(w
>xi + b) ≥ 1

cannot be satisfied.

Adding slack variables ξi

min
w,b,ξ

‖w‖2 + C

n∑
i=1

ξi subject to ∀i yi(w
>xi + b) ≥ 1− ξi , ξi ≥ 0

Parameter C controls the relative importance of:
– correctly classifying all the training examples,
– obtaining the separation with the largest margin.

Reduces to hard margins when C =∞.
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Soft margins and Hinge loss

The soft margin problem

min
w,b,ξ

‖w‖2 + C

n∑
i=1

ξi subject to ∀i yi(w
>xi + b) ≥ 1− ξi , ξi ≥ 0

is the same thing as

min
w,b,ξ

‖w‖2 + C

n∑
i=1

`(yi(w
>xi + b)) with `(z) = max(0, 1− z)
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Soft Margins

Primal formulation

min
w,b,ξ

‖w‖2 + C

n∑
i=1

ξi subject to ∀i yi(w
>xi + b) ≥ 1− ξi , ξi ≥ 0

Dual formulation

max
α

∑
i

αi −
1

2

∑
ij

yiyj αiαj x>i xj subject to

{
∀i 0 ≤ αi ≤ C∑
i yiαi = 0

The primal and dual solutions obey the relation w =

n∑
i=1

yi αi xi .

The threshold b is easy to find once w is known.
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Soft Margins

αi<C0<

αi<C0<

αi<C0<

ξi

α =0i

α =0i

ξi
ξi

αi=C

αi=C

αi=C

α =0i

α =0i
α =0i

α =0i
α =0iα =0i

αi<C0<

αi<C0<
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Beyond linear separation

Reintroducing the Φ(x)

– Define K(x,v) = Φ(x)>Φ(v).

– Dual optimization problem

max
α

∑
i

αi −
1

2

∑
ij

yiyj αiαj K(xi,xj) subject to

{
∀i 0 ≤ αi ≤ C∑
i yiαi = 0

– Discriminant function

f (x) = w>Φ(x) + b =

n∑
i=1

yi αiK(xi,x)

Curious fact
– We do not really need to compute Φ(x).
– The dot products K(x,v) = Φ(x)>Φ(v) are enough.
– Can we take advantage of this?
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Quadratic Kernel

Quadratic basis

Φ(x) =
( [

xi
]
i ,
[
x2
i

]
i ,
[√

2 xixj
]
i<j

)
Dot product

Φ(x)>Φ(v) =
∑
i

xivi +
∑
i

x2
iv

2
i +

∑
i<j

2 xivixjvj

– Are there d(d+ 3)/2 terms to add ?
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Quadratic Kernel

Quadratic basis

Φ(x) =
( [

xi
]
i ,
[
x2
i

]
i ,
[√

2 xixj
]
i<j

)
Dot product

Φ(x)>Φ(v) =
∑
i

xivi +
∑
i

x2
iv

2
i +

∑
i<j

2 xivixjvj

=
∑
i

xivi +
∑
i,j

xivixjvj

=
∑
i

xivi +

(∑
i

xivi

)2

= (x>v) + (x>v)2

– There are only d terms to add !
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Polynomial kernel

Degree Dim(Φ(x)) Φ(x)>Φ(v)

1 d (x>v)

2 ≈ d2/2 (x>v) + (x>v)2

3 ≈ d3/6 (x>v) + (x>v)2 + (x>v)3

. . .

n ≈ dn/n! (1 + x>v)d

The number of parameters increases exponentially quickly.

But the total computation remains nearly constant.
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Linear
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Quadratic
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Polynomial degree 3
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Polynomial degree 5
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Polynomial kernels and more

Weighted polynomial kernel: Kd(x,v) =

d∑
i=0

γi

i!
(x>v)i.

– This is a polynomial kernel.

– Coefficient γ controls the relative importance

of terms of various degree.
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Polynomial kernels and more

Weighted polynomial kernel: Kd(x,v) =

d∑
i=0

γi

i!
(x>v)i.

– This is a polynomial kernel.

– Coefficient γ controls the relative importance

of terms of various degree.

Exponential kernel: K∞(x,v) =

∞∑
i=0

γi

i!
(x>v)i = eγ x>v

– This is non longer a polynomial kernel.

– The dimension of Φ(x) is infinite.

– The computation remains finite.
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Radial Basis Function kernel

Radial Basis Functions
– Approximating functions with expressions of the form

fw(x) =
∑
i

wiF (‖x− xi‖)

– Gaussian kernel

F (r) = e−γr
2

Radial Basis Kernel
– Running a SVM with kernel K(x,v) = e−γ‖x−v‖2

results in a discriminant function

fw(x) =
∑
i

yiαie
−γ‖x−xi‖2

Questions
– Is there a function Φ that corresponds to this kernel?
– Does this work?
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Radial Basis (gamma = 0.1)
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Radial Basis (gamma = 1)
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Radial Basis (gamma = 10)
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Radial Basis (gamma = 100)
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Radial Basis (gamma = 100)
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Radial Basis (gamma = 100)
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Mercer kernel

Definition

– Kernel K(x,v) is a Mercer kernel iff it is

1. symmetric: ∀x,v K(x,v) = K(v,x)

2. positive: ∀k ∀x1 . . .xk ∀c1 . . . ck

k∑
i,j=1

cicjK(xi,xj) ≥ 0

Mercer theorem

– For any Mercer kernel K(x,v)

there exists a vectorial space Ω

and a function Φ : x 7→ Φ(x) ∈ Ω

such that K(x,v) = Φ(x)>Φ(v).

Practical consequences

– We can create models by specifying basis functions Φ(x).
– We can also create models by specifying kernels K(x,v).

Léon Bottou 37/46 COS 424 – 4/1/2010



Usual and customary kernels

K(x,v) Decision

boundary

Dim(Φ-space)

linear x>v hyperplanes n

quadratic x>v + x>v2 conics
n(n+3)

2

d-polynomial (1 + x>v)d ? ≡ nd

d

gaussian: exp(−γ||x− v||2) smooth ∞
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More kernels

K(x,v)

spline 1 + x>v +

d∏
j=1

∫ R

−R
[xj − t]+ [vj − t]+ dt

multilayer perceptron tanh(αx>v − β)

sum
∑
j λjKj(x,v) λj ≥ 0

tensor product
∏
jKj(xj, vj)
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Exotic kernels (1)

Input space needs not be a vector space.

Kernels defined on histograms and p.d.f.

K(x,v)

Kullback exp(−β(D(x‖v) + D(v‖x)))

Jensen exp(−β(D(x‖x+v
2 ) + D(v‖x+v

2 )))

Hellinger exp

(
−β
∫ √

x(t)−
√
v(t) dt

)
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Exotic kernels (2)

Input space needs not be a vector space.

Kernels defined on sequences.

K(x,v)

Fisher

[
∂ logL
∂λ (x)

]> [∂ logL
∂λ (v)

]
where L(.) is the likelihood of a H.M.M.

string number of common substrings of length d

rational defined by certain finite state automatons
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Kernels everywhere

Kernel Principal Component Analysis.

Compute principal subspaces in feature space.

• Eigenvectors in Φ-space defined as:

Ep =
∑
i

αi,pΦ(xi)

• Cannot find pre-images ek such that Ek = Φ(ek).

But can extract components in principal subspace:

sk(x) =
∑
i

αi,kK(x,xi)

• Related to Isomap, LLE, Spectral Clustering.
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Kernels everywhere

One Class Support Vector Machines.

Locate the support of the data distribution.

w
Assume ||xi|| = 1

Min||w||2 with ∀i, w.xi ≥ 1.

Best done in Φ-space of course.

Example: Novelty detection.
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Kernels everywhere

More kernel algorithms.

Kernelizing a standard algorithm was in fashion

SVR Support Vector Regression

KLDA Kernel Linear Discriminant Analysis

LS-SVM Least Square Support Vector Machine

KLR Kernel Logistic Regression

. . .

and led to the rediscovery of old algorithms:

Aizerman-Braverman Potential Functions

→ Kernel Perceptron, Kernel Adatron, etc.

Gaussian Processes

→ Kriging
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Conclusion

Soft-margin SVM

– a classifier using the hinge loss

– with a kernel representation

– and capacity control using regularization.

Obvious variants

– change the loss

– change the representation

– change the regularizer. . .
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Outlook

Success stories

– Text categorization

– Classification tasks in general

the best classifier can change a lot,

but the SVM is rarely far away.

Weak points

– Computationally costly with noisy data

– L2 regularization works poorly when irrelevant inputs abound.
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