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Introduction

Generalization

– Optimize system on a training set and

expect it to work in future situation.

– Why does it work? When?

– Can we do it better?

Summary

– Generalization: why and when?

– Structural risk minimization.

– Learning algorithms in little pieces.
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Generalization is not obvious

Continue the sequence

– 1, 3, 5, 7, ?

Learning by heart versus learning the concept
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Generalization is not obvious

Continue the sequence

– 1, 3, 5, 7, ?

Learning by heart versus learning the concept

– But which concept it the right one?

A couple answers

– Odd numbers: 1, 3, 5, 7, 9, 11, 13, 15, 17, . . .

– Prime numbers: 1, 3, 5, 7, 11, 13, 17, 19, 23, . . .

– Numbers palindromic in base two: 1, 3, 5, 6, 9, 15, 17 . . .

– Integers such that 10n + 19 is prime: 1, 3, 5, 7, 10, 11, 17, 59, . . .

– Sloane’s encyclopedia of numerical sequences

lists 598 well known sequences that start like that.
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I. Why can we generalize?
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The transductive paradigm

For simplicity, we consider only a binary classification problem.

– Given a dataset of 2l examples (pattern + class).

– Split examples in two sets L and T of size l.

– Training on the learning set L returns a classifier f .

– Measure learning error µL.

– Measure testing error µT .

There are Nsplits = Cl2l =
2l!

l! l!
possible splits.

How many splits yield µT > µL + ε ?

Let’s count them!
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Transduction and truth

Ground truth assumption

– “All examples are drawn independently from

a single unknown probability distribution.”

– We cannot test whether this assumption is correct.

Transductive paradigm

– We do not make the ground truth assumption!

– In fact we do not assume anything about the examples!

– But we assume that all splits are equally likely.

– And we consider that success on the testing set is sufficient evidence.

Remark

– The transduction paradigm avoids a lot of technical difficulties.

– Because it describes something more essential. . .
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Error vectors

Classification function f .

Examples (x1, c1) . . . (xi, ci) . . . (x2l, c2l).

Error vector m(f) = (0, 0, 0, 1, 0, 0, 1, 0 . . . , 0, 0, 0).{
0 if xi correctly classified by f
1 otherwise

Summarizes everything we need to know about f .

Enough to compute learning error µL and testing error µT .
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When there is a single error vector

Assumption

– Stupid algorithm always returns the same classification
function f regardless of the training set L.

– Therefore we always get the same error vector m = m(f)

Let’s count the splits

– Assume vector contains p ones: p = 2lµ(m) = l(µT (m) + µL(m)).

– There are Ckp C
l−k
2l−p splits with k ones in the training set.

Fr {µT (m)− µL(m) > ε} = Fr

{
p− k
l
−
k

l
> ε

}

=
1

Nsplits

∑
p−2k>lε

CkpC
l−k
2l−p

– This is called the hypergeometric tail.
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Bounds and approximations

We can use a computer and tabulate everything

– Let’s define ε(µ, l, η) such that

Fr

{
µT (m)− µL(m) > ε(µ(m), l, η)

}
= η

But some bounds and approximations can be useful

– From (Vapnik, 1982) using Chernoff bounding :

ε(µ, l, η) ≤

√
log(2/η)

l− 1
ε(µ, l, η) ≤

√
4µ

log(2/η)

l

– Reasonable approximation for l large enough :

ε(µ, l, η) ≈

√
4µ(1− µ)

log(2/η)

l

– They all go to zero when l increases.
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Decomposition for the general case

Fr {µT − µL > ε} =

∑
L,S

1

Nsplits



0
...
0
1
0
...
0


×



1I {µT (m1)− µL(m1) > ε}
1I {µT (m2)− µL(m2) > ε}

...
0
1
...

1I {µT (mN )− µL(mN ) > ε}


– The sum runs over all the possible splits.

– The green vector indicates which error vector is produced by the

classifier returned by running learning algorithm on that split.

– The purple vector indicates which error vectors have

an error deviation greater than ε.
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Gross bound for the general case

Bound the green vector with a vector with all ones!
This sometimes called the union bound.

Fr {µT − µL > ε(µ, l, η)} ≤ ηN (F ,D)

Equivalently

Fr

{
µT − µL > ε

(
µ, l,

η

N (F ,D)

)}
≤ η

N (F ,D) is the important quantity.
– Family F contains all classifiers possibly returned by the algorithm.
– N (F ,D) counts the distinct error vectors produced by f ∈ F .

With probability 1− η

µT − µL ≤ ε
(
µ, l,

η

N (F ,D)

)
≈

√
4µ(1− µ)

log(2/η) + logN (F ,D)

l
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The failure mode

– Obviously N (F ,D) ≤ 22l.

What is happening when N (F ,D) = 22l ?

– All the possible error vectors are represented.

– Split the classifiers from F into groups of classifiers

that perform identically on the learning set.

– Each group contains classifiers that produce all possible error

patterns on the testing set.

– Classifiers from a same group perform identically on the learning set.

Short of additional information, the trainign algorithm cannot

know which ones work well on the testing set.

– No generalization guarantees.

– But we can be lucky. . . sometimes. . .
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The finite case

Assumption

“The family of classifiers F is finite.”

Consequences

– N (F ,D) ≤ Card(F) < 22l when l is large enough.

– µT − µL <∼

√
4µ(1− µ)

log(2/η)

l
+

log(CardF)

l
.

– We can generalize.

– We need l� log Card(F).
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The infinite case

Vapnik-Chervonenkis combinatorial lemma

Let mF(l) = max
{x1,c1...xl,cl}

N (F , {x1, c1 . . . xl, cl}).

– Either mF(l) = 2l for all l.

– Or mF(l) ≤
(
le
h

)h
where h is the last value such that mF(h) = 2h.

– Quantity h is called the Vapnik-Chervonenkis of the family F .

It measures the “capacity” of a family of functions.

(Vapnik and Chervonenkis, 1968) (Sauer, 1972)

Some people unfairly call this lemma “Sauer’s lemma”.

Léon Bottou 15/49 COS 424 – 3/30/2010



The infinite case

What is true for mF(l) is true for N (F ,D).

l

log�������

h

~ l ������	�	
��
���
��

~ log(l) ���	�	
��
���
��

– We cannot generalize when h =∞.

– Otherwise µT <∼ µL +

√
4µ(1− µ)

[
log(2/η)

l
+
h

l
log

2le

h

]
– We can generalize when h <∞.

– We need l� h.
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VC dimension versus other capacity measures

Results with VC dimension

• Impressive achievements despite gross bounding technique:

– Infinite VC dimension =⇒ no generalization guarantees.

– Finite VC dimension =⇒ generalization when l is large enough.

• Price of the gross bounding technique:

– Simple bounds on µT − µL are way too large.

Annealed VC entropy logN (F ,D)

• This is a quantity that matters more.

• Better estimates of this quantity improves µT − µL bounds.

• Lots of sophisticated theoretical works.

– data dependent bounds, localized bounds, . . .

Union bound

• Maybe the coarsest bound here.

• Little progress improving on that.
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Capacity = number of parameters

The VC dimension of the set of linear discriminant functions

fw,b(x) = 1I
{
w>x+ b ≥ 0

}
x,w ∈ Rd b ∈ R

is equal to the number of parameters

h = d+ 1 .
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Capacity � number of parameters

The VC dimension of the set of functions

fw(x) = 1I {sin(wx) ≥ 0} x,w ∈ R

is infinite
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Capacity � number of parameters

Assume the patterns x1 . . . x2l are known beforehand.

The classes are unknown.

Let R = max ‖xi‖.

We say that a hyperplane

w>x+ b w, x ∈ Rd ‖w‖ = 1

separates patterns with margin ∆ if

∀i = 1 . . . 2l |w>xi + b| ≥ ∆

The family of ∆-margin separating hyperplanes has

logN (F ,D) ≤ h log
2le

h
with h ≤ min

{
R2

∆2
, d

}
+ 1
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Razors

Occam’s razor

– When reasoning, “entities must not be multiplied beyond necessity”.

– Means that the simplest solution is often the correct one.

Capacity and Occam’s razor

– What matters is not the complexity of the final classifier,

but the capacity of the family of classifiers we consider.

– Capacity is not the same as the number of parameters.

Vapnik’s razor

– “When solving a problem, avoid solving

a more complicated problem as an intermediate step.”

– The more complicated problem needs a higher capacity F .

– Therefore one would need more examples.
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II. Structural Risk Minimization, etc.
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Structural Risk Minimization

Consider an embedded sequence of families of functions

F1 ⊂ F2 ⊂ F3 ⊂ . . .

����
����

This is called a structure.
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Structural Risk Minimization

������������	
����
����������

�

��

����������	

�
���
���

�����

There is a best family in the sequence for each l.

Léon Bottou 24/49 COS 424 – 3/30/2010



Model Selection

1. Define a capacity control structure.

2. Optimize for each structure member.

3. Choose one.

– Empirically :

Holdout (looses examples)
Leave-one-out (high variance)
K-Fold CV (few results)

– Theoretically :

Standard VC bounds (p < 1000)
Advanced VC bounds (p < 1)
Effective VC bounds (compute intensive)
Automatic (dream)

Léon Bottou 25/49 COS 424 – 3/30/2010



What is a “structure”

����
����

The structure defines a preorder on the functions.

All other things being equal:
– We’ll prefer a function from F1 over a function of F2.
– We’ll prefer a function from F2 over a function of F3.
– We’ll prefer a function from F3 over a function of F4.
– etc.

Very similar to a Bayesian prior!
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Regularizers

����
����

Let C1 < C2 < C3 < C4 < . . .

Define Fi = {f : Ω(f) ≤ Ci}.

The function Ω(f) expresses preferences.

We prefer f1 over f2 when Ω(f1) < Ω(f2).

Resulting learning algorithm:

min
f

1

n

n∑
i=1

`(yi, f(xi)) + λΩ(f)

– Regularizer Ω(f) expresses preferences.

– Hyperparameter λ define their strength.

– Choosing λ amounts to choosing a Fi.
– Must adjust λ for each l, for instance using cross-validation.
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III. Learning algorithms in little pieces
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A. Representation

Representation
Parametric vs. Kernels

Linear vs. Non-Linear

Capacity Control

Explicit via architecture

Explicit via feature selection

Explicit via regularizers

Implicit via optimization

Implicit via margins

Operational

Considerations

Loss functions

Online vs. offline

Budget constraints

Computational

Considerations

Exact algos for small data.

Stochastic algos for big data.

Parallel algos.
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Representation - Parametric

x

ŷ

L

θ
Parameter

Output:

Input:

System

Loss 
Function Parametric:

θ is a vector.

Non Parametric:

θ belongs to a bigger space.
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Representation - Networks

Example: Convolutional Network

• Very good for image and signal.
• Learning algorithms are delicate (non-linear, non-convex.)
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Representation - Centroids

Examples: KMeans, LVQ

Decision
boundary

Class 1 reference points

Class 2 reference points

• Fast algorithms for relatively low input dimension.

• Generally more difficult for high input dimension.
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Representation - Mixtures

Example: Mixture of Gaussians

• Fast algorithms for relatively low input dimension.

• Generally more difficult for high input dimension.

Example: Mixture of Experts, Voting Schemes.

• Divide and conquer.

• Capacity control more difficult.
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Representation - Kernels

Suitable for θ in function space.

• Decision function uses the training examples xi.

ŷ(x) =
∑
i

αiK(xi, x) + b

• Kernel function is a dot-product in some large space.

K(x, y) = 〈Φ(x),Φ(y)〉

• Algorithms must only use K(x, y), not Φ(x).

• Sparsity is desirable.

• See next lecture!
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B. Loss Functions

Representation
Parametric vs. Kernels

Linear vs. Non-Linear

Capacity Control

Explicit via architecture

Explicit via feature selection

Explicit via regularizers

Implicit via optimization

Implicit via margins

Operational

Considerations

Loss functions

Online vs. offline

Budget constraints

Computational

Considerations

Exact algos for small data.

Stochastic algos for big data.

Parallel algos.
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Pattern Recognition Losses - Ideal

• Example x has class y = ±1.

• Mistake if y and ŷ(x) have different signs.

• Minimize number of mistakes?

y y(x)^
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Pattern Recognition Losses - Quadratic

L = (y − ŷ(x))2

• Approximate posterior probabilities P (y|x).
• Convex, easy to optimize.
• Bound problems.

y y(x)^
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Pattern Recognition Losses - Sigmöıd

L = ( y − 1.7 tanh(ŷ(x)) )2

• Solves bound problems.
• Non-convex, more difficult to optimize.
• Still Approximate posterior probabilities P (y|x).

y y(x)^
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Pattern Recognition Losses - LVQ. . .

y y(x)^

Centroid Representation + LVQ loss −→ LVQ algorithm.

ŷ(x) =
(x− w+)2 − (x− w−)2

δ(x− w−)2

w− : closest centroid.

w+ : closest centroid w/correct class.
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Pattern Recognition Losses - Exp/Log

• Approximate posterior probabilities P (y|x).

• Convex.

y y(x)^

• ExpLoss ←→ Boosting,. . .

• LogLoss ←→ Maximum likelihood for P {Y |X}.
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Pattern Recognition Losses - Hinge

• Does not approximate probabilities.
• Convex.

y y(x)^

• PerceptronLoss ←→ Perceptron,. . .
• HingeLoss ←→ SVM,. . .
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Pattern Recognition Losses - Ramps

y y(x)^
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Clustering Losses - VQ

W(1)
W(2)

W(3)
Minimize quantization error:

L = min
k

(x− wk)2

Example: k-Means.
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Density Losses - KL, Hellinger

Optimize:

L = − log(ŷ(x))

Normalization:∫
ŷ(x)dx = 1 −→ P (x)∑
k ŷk(x) = 1 −→ P (y|x)

Most statistical systems.

Compare histograms:

L =
∑
k

(√
ŷk(x)−√yk

)2

Novelty detection.
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C. Capacity Control Strategies

Representation
Parametric vs. Kernels

Linear vs. Non-Linear

Capacity Control

Explicit via architecture

Explicit via feature selection

Explicit via regularizers

Implicit via optimization

Implicit via margins

Operational

Considerations

Loss functions

Online vs. offline

Budget constraints

Computational

Considerations

Exact algos for small data.

Stochastic algos for big data.

Parallel algos.
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Capacity Control - Explicit

..........
via Architecture

Architecture changes capacity.

Model selection.

Search algorithm.

via Feature Selection

Feature selection.

Search algorithms.
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Capacity Control - Explicit

..........

Preprocessing

via Preprocessing

Handcrafted features.

Dimensionality reduction.

Smoothing.

min

{
EzL(z, w)
+λΩ(w)

via Regularization

Hyperparameter λ.

Ω

‖w‖2 Ridge, . . .
‖w‖ Lasso, . . .

‖∂xŷ(x)‖2 Smoothness, . . .
‖Tαw‖2 Tangent prop
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Capacity Control - Implicit

Example:

- Non-Linear Neural Network.

- 105 to 106 parameters.

- Poor optimizer (stochastic gradient)

This controls capacity via:

- Initial parameters w0.

- Learning rate limits ‖w − w0‖2.

- Algorithm inefficencies ‖∂xŷ(x)‖2.

- Early stopping.

The capacity control levers are mixed

with the delicate optimization settings.

Léon Bottou 48/49 COS 424 – 3/30/2010



Capacity Control - Bayesian

Bayesian priors also express a preorder on the functions f .

– but also define a numerical strength associated with preferences.

Bayes framework does not suggest a λ hyperparameter.

– But the prior numerical strength can be more or less peaky.

– Often the prior peakiness is controlled by an hyperparameter

that itselfs obeys its own prior distribution, etc.

Bayesian averaging has no equivalent here!
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