Interacting with Data

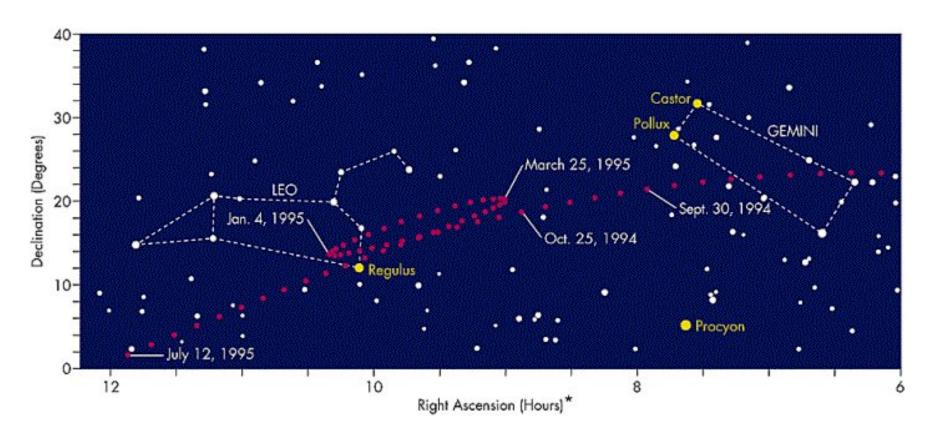
Léon Bottou

NEC Labs America

COS 424 - 2/2/2010

Summary

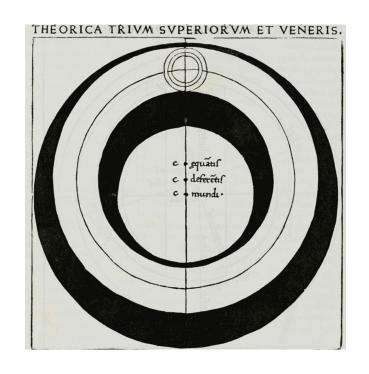
- Three short stories.
- Practical information about the course.


Story 1 – The orbit of Mars

Suppose you are ancient Greeks watching the sky.

- Stars move in unison. Like a big sphere.
- The Sun and the Moon follow nice trajectories relative to the stars.
 Like points sitting on interior spheres.
- The Planets are bizarre.
 - Mercury and Venus never go very far from the Sun.
 - Mars, Jupiter and Saturn follow very strange trajectories.

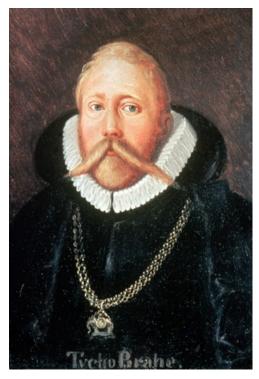
Story 1 – Retrograde Motion


Mars makes really strange moves.

Jupiter and Saturn do the same, but that takes a lot longer.

Story 1 – Cycles and Epicycles

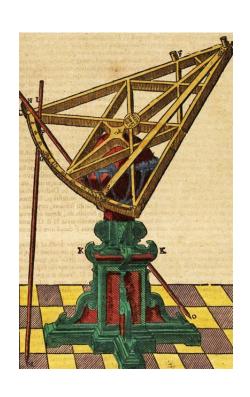
Aristotle (384-322BC), Ptolemy (90-168AD): 53 to 55 spheres.



Copernicus: Puts the Sun in the center. Keeps the spheres.

Observation tables were not accurate enough to sort them out.

Story 1 – The Characters

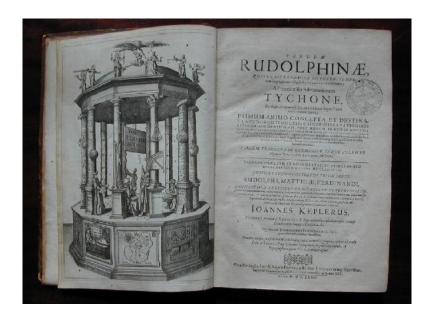



Tycho Brahe 1546-1601

Johannes Kepler 1571-1630

Story 1 – Tycho's Observatories

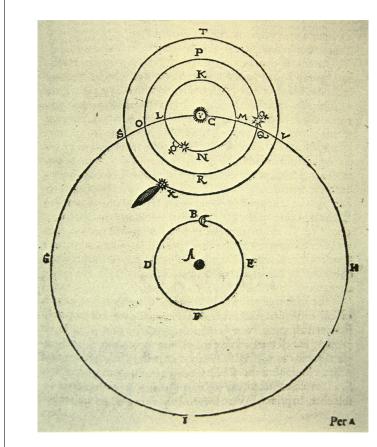
First in Uraniborg.


Then near Prague, thanks to a "grant" from emperor Rudolf II.

There he hires a bright young assistant named Johannes Kepler.

Without telescope, but with a modern approach to data collection:

- daily observation of 1000 stars and 7 planets,
- record positions $\pm 1'$ arc.


Story 1 – The Rudolphine Tables

The *Tabulae Rudolphinae* were finally published by Kepler in 1627 under emperor Ferdinand.

54			CARREST PROPERTY.		Rudolphi			
		Tabula	Æqua	tionu	m MAR			14.254
Anomalia Eccentris um aquatio imparte phys	Interco- lumnium, Com Log-		Lutervallů Cum Loga- rechmo		Anomalia Eccentri, Camaquatio nispartephys.	Interco- lumniums Cum Log- arithms.	Anomalia cozquata:	Intervallů Cam Loga- rishmo
20	\$89¢	115.17.11	145293		2.39.14	16230	147.13.44	31732
4.55.50	9190	116.19.52	145080	15	151	1.10.43	148-18-42	33651
4-13. 1	9480	117.12.39	144871	25	152 2.29.29	1.10.49	149.23.44	139887
4.90. 6	9780	119.25.31	174663	15	153	1.10.56	150.28.49	139773
124	10070	119.28.29	141458	=5	154	16910	151.33-57	139663
1.25	10360	120.21.33	144255	25	155	17060	152.39. 9	139558
4.20.53	10650	121.34.42	144055	24	156	1.11.16	153.44.23	139456
127	10930	122.37.56	143857	24	157	17550	154-49-40	139358
128	11:10	123:41.14	143661	24	158 .	1.11.28	155.55. 0	139263
129	11480	(2) 5 (6) (1)	143468	24	159	1,11.33		139173
130	11740	125.48. 6	143278	34	1.45.56	17720	158- 5-49	139087
131	12000	126.51.40	143091	24	16t 1.43.42	17840		139005
132	13260	127.55.19	142906	23	161	17950		138927
133	12510	128.59. 3	142724	2,	163	1\$050		138852
134	12760		142545	13	164	18160		138782
135	13000		142370	23	165	18260	163.33.25	138716
136	13240	SECTION	142198	2.3	166	18350	prejudité	138654
137	13480	132.10.43	142018	122	167	18440	165-44-45	138597

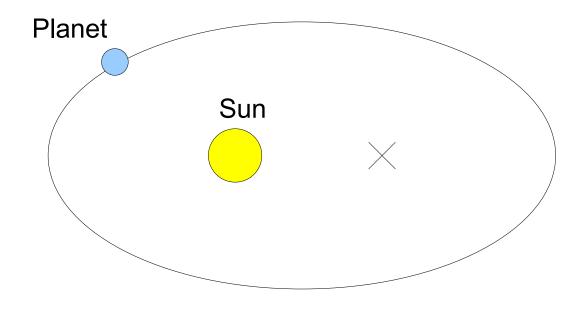
Story 1 – The "War with Mars"

The Tychonic system (Copernicus light)

First model of the orbit of Mars. under Tycho's direction

- average discrepancy: 2'.
- maximal discrepancy: 8'.

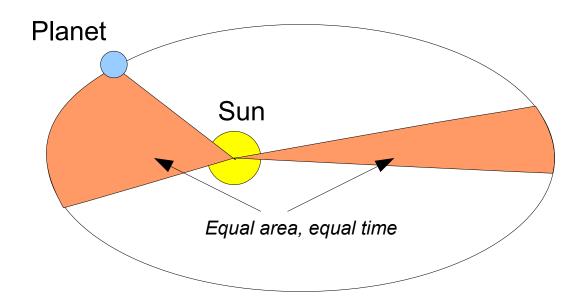
Kepler still unhappy.


He wants to go Copernican.

Tycho does not like that.

Tycho died in 1601.

Story 1 – First law of Kepler (1605)


The orbits of the planets are ellipses with the Sun at a focal point.

J. Kepler, Astronomia nova, 1609

Story 1 -Second law of Kepler (1609)

The line joining the planet to the Sun sweeps out equal areas in equal times as the planet travels around the ellipse.

J. Kepler, Astronomia nova, 1609

Story 1 - Third law of Kepler (1619)

The ratio of the squares of the revolutionary periods for two planets is equal to the ratio of the cubes of the length of their major axes.

$$rac{P_\mathrm{a}^2}{P_\mathrm{b}^2} = rac{R_\mathrm{a}^3}{R_\mathrm{b}^3}$$

J. Kepler, Harmonices Mundi, 1619

Story 1 - Validation

- Kepler had it mostly right in 1605.

 Galileo points a telescope to the sky. He observes the phases of Venus with a telescope in 1610 and concludes that Venus orbits the Sun.

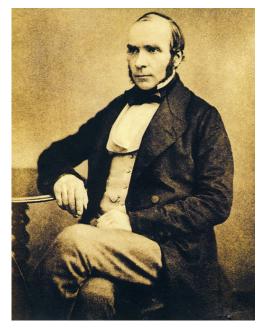
 Newton publishes the *Principia* in 1687 and shows that the laws of Kepler (with a small correction) derive from his mechanics and from the idea of gravitation.

Story 1 – Epilogue

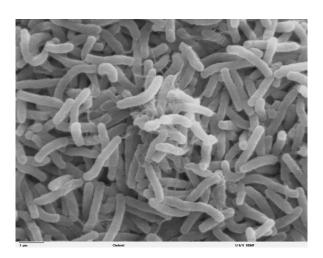
This is about the foundation of the modern scientific approach.

- 1. Get the best data you can.
- 2. Build models that fit the data as closely as possible.
- 3. Make sure you get external validation.
 - validate with testing data set aside from the beginning.
 - validate using different datasets for the same problem.

14/35


and more generally, build a convincing story...

Story 2 – Cholera in London

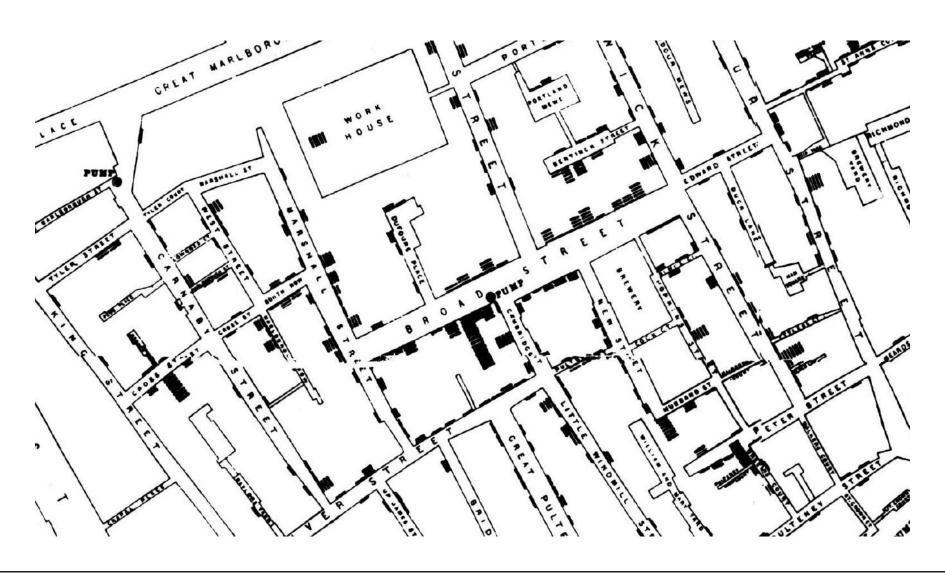

London, 1854:

- Industrial revolution.
- Two millions people.
- Insufficient sewage.
- Garbage removal problems.
- Little clean water.

Story 2 – The Characters

John Snow 1813-1858

Vibrio Cholerae still around


John Snow was a strong advocate of hygiene and anesthesia.

Story 2 – The Outbreak

The most terrible outbreak of cholera which ever occurred in this kingdom, is probably that which took place in Broad Street, Golden Square, and the adjoining streets, a few weeks ago. Within two hundred and fifty yards of the spot where Cambridge Street joins Broad Street, there were upwards of five hundred fatal attacks of cholera in ten days. The mortality in this limited area probably equals any that was ever caused in this country, even by the plague, and it was much more sudden, as the greater number of cases terminated in a few hours.

John Snow, On the mode of communication of cholera, 1854.

Story 2 – The Map

Story 2 – The Broad Street Pump

On proceeding to the spot, I found that nearly all the deaths had taken place within a short distance of the [Broad Street] pump. There were only ten deaths in houses situated decidedly nearer to another street-pump. In five of these cases the families of the deceased persons informed me that they always sent to the pump in Broad Street, as they preferred the water to that of the pumps which were nearer. In three other cases, the deceased were children who went to school near the pump in Broad Street...

John Snow, On the mode of communication of cholera, 1854.

Story 2 – Epidemiology and Statistics

Snow uses simple statistics to confirm the role of impure water.

TABLE VIII (MORTALITY FROM CHOLERA IN 7 WKS ENDING 26TH AUGUST)

			Water Supply				
Sub-Districts	Pop.	Deaths by Cholera in the four wks. ending 5th August	Southwark & Vauxhall	Lambeth	Pump-wells	River Thames, ditches, etc.	Unascertained
St. Saviour, Southwark	19,709	125	115	-	-	10	-
St. Olave, Southwark	8,015	53	43	-	-	5	5
St. John, Horsleydown	11,360	51	48	=	-	3	82
St. James, Bermondsey	18,899	123	102	<u>=</u>	-	21	928
St. Mary Magdalen	13,934	87	83	-	-	4	
Leather Market	15,295	81	81	-	-	a a	-
Rotherhithe	17,805	103	68	-	-	35	-

Story 2 – Epidemiology and Statistics

Snow uses simple statistics to infirm competing hypotheses.

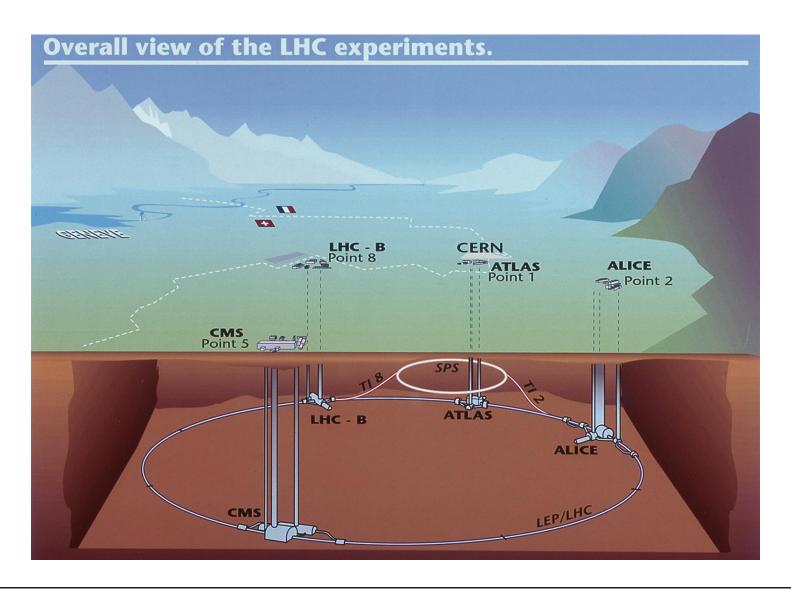
Table XIV (partial)

	No of Deaths	Ratio
Agents	12	1 in 40
Bricklayers and builders	14	1 in 39
Physicians, surgeons,	16	1 in 265
Magistrates, barristers,	13	1 in 375
Merchants	11	1 in 348
Footmen and men servants	25	1 in 1572

If cholera was propagated by effluvia from sick people,

- why are physicians less affected than their patients?
- why are men servants less affected than their masters?
- why are master brewers virtually immune?

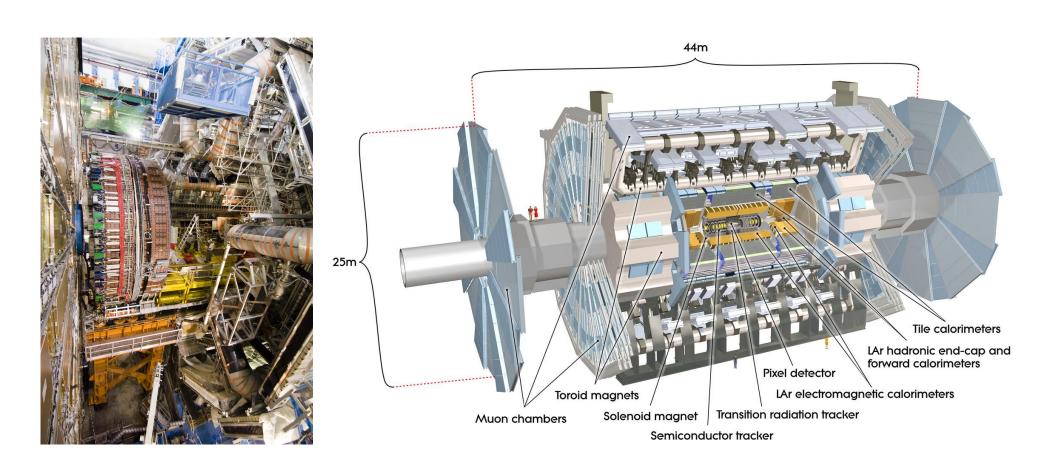
Story 2 – Epilogue


This is again an example of the scientific method. But there are important differences:

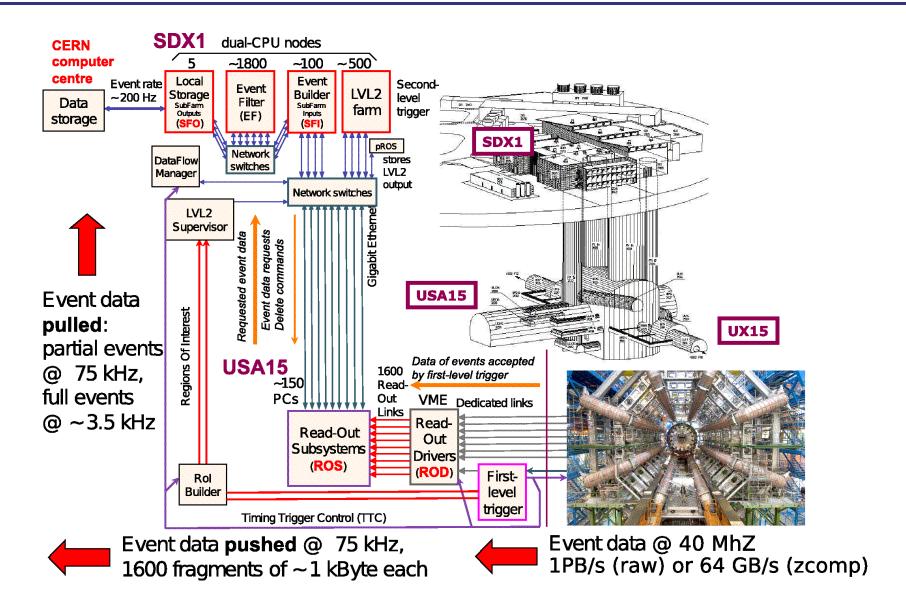
- 1. Causality: prediction versus intervention.
 - What happens if we shut off the Broad St. pump?
 - What happens if we ensure that everyone gets clean water?
 Nothing in John Snow's data tells us that directly.
 Only randomized experiments could tell.
- 2. Noise and Calculus: $A \Longrightarrow B$ does not mean $almostA \Longrightarrow almostB$.
 - Kepler's orbits are very accurate.
 We can use calculus to answer new questions.
 For instance, predicting eclipses and transit.
 - Simply counting the odds to get cholera ignores many factors.
 Noise accumulates quickly during calculus.
 We need direct evidence from the data to answer new questions.

Story 3 – Big Science

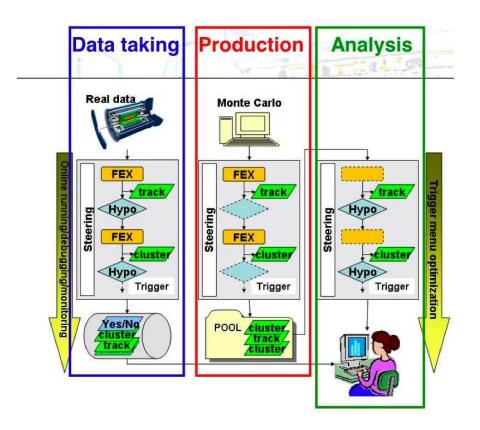
Story 3 – Large Hadron Collider



Story 3 – The Characters


The ATLAS collaboration. Many thanks to Kyle Cranmer, NYU

Story 3 – Atlas Overview



- 40M events per second, 25MB per event.
- 1PB/s (reduced to 64TB/s after zero removal).

Story 3 – Atlas Triggers

Story 3 – Atlas Analysis

Runs in \sim 40 sites worldwide.

Compare statistics from

- observations,
- simulations.

Fine tune the triggers.

Cutting edge physics theories have many adjustable knobs. They can fit almost any observation. How to validate?

Story 3 – Epilogue

Computers do not change the problems.

Computers change the scale of the problems.

but

What is a minor problem with small scale data can turn into a formidable problem with large scale data.

The Course

Goals

- Learn selected theoretical tools.
- Learn selected practical approaches.
- Acquire experience with several kinds of data.
- Acquire the right attitude.

Topics

Classification, Clustering, Statistics, Exploratory methods, Applications, . . .

See Also

- COS511 Theoretical Machine Learning, Rob Shapire.
- COS513 Foundations of probabilistic modeling, David Blei.

Details

People

- Professor: Léon Bottou leon@bottou.org
- TA: Sean Gerrish sgerrish@cs.princeton.edu

Web

- http://www.cs.princeton.edu/courses/archive/spring10/cos424
- Select [Assignments], [Administrivia].
- Add yourself to the course mailing list.
- Fill the brief survey.

Readings, Scribes

There is no perfect textbook for this class.

Scribe notes

Students will be asked to take scribe notes which will be posted on the course web site.

Readings

Additional papers and book chapters will also be provided.

Mostly from three books which are on reserve.

- The Elements of Statistical Learning, Hastie et al.
- Pattern Recognition and Machine Learning, Bishop.
- Principles of Data Mining, Hand et al.

Homeworks

Four Homework Assignments

- Progressively acquire practical experience with data.
- Assignments will not be programming assignments.
- Computers as a tool rather than an end.

Software Tools

- There are many options, e.g. Matlab, R.
- Coding everything in C is a very instructive option.
- Many knowledgeable people recommend R.
- R tutorial on Tue 9/2, 11am, here, [Sean].

Project

Goals

Acquire experience on something fun.

Process

- Form groups of 2-3 students.
- Write a one page project proposal before 4/13.
- Feel free to discuss your proposal with me.
- Do the work.
- Write report before 5/01.
- Present poster on 5/04.

Next Lecture

Connecting the dots
with common sense and
a little bit of linear algebra.

Who wants to be scribe?