
Ensemble Methods in Machine LearningThomas G. DietterichOregon State University, Corvallis, Oregon, USA,tgd@cs.orst.edu,WWW home page: http://www.cs.orst.edu/~tgdAbstract. Ensemble methods are learning algorithms that construct aset of classi�ers and then classify new data points by taking a (weighted)vote of their predictions. The original ensemble method is Bayesian aver-aging, but more recent algorithms include error-correcting output coding,Bagging, and boosting. This paper reviews these methods and explainswhy ensembles can often perform better than any single classi�er. Someprevious studies comparing ensemble methods are reviewed, and somenew experiments are presented to uncover the reasons that Adaboostdoes not over�t rapidly.1 IntroductionConsider the standard supervised learning problem. A learning program is giventraining examples of the form f(x1; y1); : : : ; (xm; ym)g for some unknown func-tion y = f(x). The xi values are typically vectors of the form hxi;1; xi;2; : : : ; xi;niwhose components are discrete- or real-valued such as height, weight, color, age,and so on. These are also called the features of xi. Let us use the notation xijto refer to the j-th feature of xi. In some situations, we will drop the i subscriptwhen it is implied by the context.The y values are typically drawn from a discrete set of classes f1; : : : ;Kgin the case of classi�cation or from the real line in the case of regression. Inthis chapter, we will consider only classi�cation. The training examples may becorrupted by some random noise.Given a set S of training examples, a learning algorithm outputs a classi�er.The classi�er is an hypothesis about the true function f . Given new x values, itpredicts the corresponding y values. I will denote classi�ers by h1; : : : ; hL.An ensemble of classi�ers is a set of classi�ers whose individual decisions arecombined in some way (typically by weighted or unweighted voting) to classifynew examples. One of the most active areas of research in supervised learning hasbeen to study methods for constructing good ensembles of classi�ers. The maindiscovery is that ensembles are often much more accurate than the individualclassi�ers that make them up.A necessary and su�cient condition for an ensemble of classi�ers to be moreaccurate than any of its individual members is if the classi�ers are accurate anddiverse (Hansen & Salamon, 1990). An accurate classi�er is one that has anerror rate of better than random guessing on new x values. Two classi�ers are



2diverse if they make di�erent errors on new data points. To see why accuracyand diversity are good, imagine that we have an ensemble of three classi�ers:fh1; h2; h3g and consider a new case x. If the three classi�ers are identical (i.e.,not diverse), then when h1(x) is wrong, h2(x) and h3(x) will also be wrong.However, if the errors made by the classi�ers are uncorrelated, then when h1(x)is wrong, h2(x) and h3(x) may be correct, so that a majority vote will correctlyclassify x. More precisely, if the error rates of L hypotheses h` are all equal top < 1=2 and if the errors are independent, then the probability that the majorityvote will be wrong will be the area under the binomial distribution where morethan L=2 hypotheses are wrong. Figure 1 shows this for a simulated ensembleof 21 hypotheses, each having an error rate of 0.3. The area under the curve for11 or more hypotheses being simultaneously wrong is 0.026, which is much lessthan the error rate of the individual hypotheses.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20

Pr
ob

ab
ili

ty

Number of classifiers in errorFig. 1. The probability that exactly ` (of 21) hypotheses will make an error, assumingeach hypothesis has an error rate of 0.3 and makes its errors independently of the otherhypotheses.Of course, if the individual hypotheses make uncorrelated errors at rates ex-ceeding 0.5, then the error rate of the voted ensemble will increase as a result ofthe voting. Hence, one key to successful ensemble methods is to construct indi-vidual classi�ers with error rates below 0.5 whose errors are at least somewhatuncorrelated.This formal characterization of the problem is intriguing, but it does notaddress the question of whether it is possible in practice to construct good en-sembles. Fortunately, it is often possible to construct very good ensembles. Thereare three fundamental reasons for this.



3The �rst reason is statistical. A learning algorithm can be viewed as search-ing a space H of hypotheses to identify the best hypothesis in the space. Thestatistical problem arises when the amount of training data available is too smallcompared to the size of the hypothesis space. Without su�cient data, the learn-ing algorithm can �nd many di�erent hypotheses in H that all give the sameaccuracy on the training data. By constructing an ensemble out of all of theseaccurate classi�ers, the algorithm can \average" their votes and reduce the riskof choosing the wrong classi�er. Figure 2(top left) depicts this situation. Theouter curve denotes the hypothesis space H. The inner curve denotes the set ofhypotheses that all give good accuracy on the training data. The point labeled fis the true hypothesis, and we can see that by averaging the accurate hypotheses,we can �nd a good approximation to f .
H H

H

Statistical Computational

Representational

h1

h3h4

h2

f f

f

h1

h2 h3

h1

h2

h3

Fig. 2. Three fundamental reasons why an ensemble may work better than a singleclassi�er



4 The second reason is computational. Many learning algorithms work by per-forming some form of local search that may get stuck in local optima. For ex-ample, neural network algorithms employ gradient descent to minimize an errorfunction over the training data, and decision tree algorithms employ a greedysplitting rule to grow the decision tree. In cases where there is enough trainingdata (so that the statistical problem is absent), it may still be very di�cultcomputationally for the learning algorithm to �nd the best hypothesis. Indeed,optimal training of both neural networks and decisions trees is NP-hard (Hya�l& Rivest, 1976; Blum & Rivest, 1988). An ensemble constructed by running thelocal search from many di�erent starting points may provide a better approxi-mation to the true unknown function than any of the individual classi�ers, asshown in Figure 2 (top right).The third reason is representational. In most applications of machine learn-ing, the true function f cannot be represented by any of the hypotheses in H.By forming weighted sums of hypotheses drawn from H, it may be possibleto expand the space of representable functions. Figure 2 (bottom) depicts thissituation.The representational issue is somewhat subtle, because there are many learn-ing algorithms for whichH is, in principle, the space of all possible classi�ers. Forexample, neural networks and decision trees are both very exible algorithms.Given enough training data, they will explore the space of all possible classi�ers,and several people have proved asymptotic representation theorems for them(Hornik, Stinchcombe, & White, 1990). Nonetheless, with a �nite training sam-ple, these algorithms will explore only a �nite set of hypotheses and they willstop searching when they �nd an hypothesis that �ts the training data. Hence,in Figure 2, we must consider the space H to be the e�ective space of hypothesessearched by the learning algorithm for a given training data set.These three fundamental issues are the three most important ways in whichexisting learning algorithms fail. Hence, ensemble methods have the promise ofreducing (and perhaps even eliminating) these three key shortcomings of stan-dard learning algorithms.2 Methods for Constructing EnsemblesMany methods for constructing ensembles have been developed. Here we willreview general purpose methods that can be applied to many di�erent learningalgorithms.2.1 Bayesian Voting: Enumerating the HypothesesIn a Bayesian probabilistic setting, each hypothesis h de�nes a conditional prob-ability distribution: h(x) = P (f(x) = yjx; h). Given a new data point x and atraining sample S, the problem of predicting the value of f(x) can be viewedas the problem of computing P (f(x) = yjS;x). We can rewrite this as weighted



5sum over all hypotheses in H:P (f(x) = yjS;x) = Xh2Hh(x)P (hjS):We can view this as an ensemble method in which the ensemble consists of all ofthe hypotheses inH, each weighted by its posterior probability P (hjS). By Bayesrule, the posterior probability is proportional to the likelihood of the trainingdata times the prior probability of h:P (hjS) / P (Sjh)P (h):In some learning problems, it is possible to completely enumerate each h 2 H,compute P (Sjh) and P (h), and (after normalization), evaluate this Bayesian\committee." Furthermore, if the true function f is drawn from H according toP (h), then the Bayesian voting scheme is optimal.Bayesian voting primarily addresses the statistical component of ensem-bles. When the training sample is small, many hypotheses h will have signif-icantly large posterior probabilities, and the voting process can average these to\marginalize away" the remaining uncertainty about f . When the training sam-ple is large, typically only one hypothesis has substantial posterior probability,and the \ensemble" e�ectively shrinks to contain only a single hypothesis.In complex problems whereH cannot be enumerated, it is sometimes possibleto approximate Bayesian voting by drawing a random sample of hypothesesdistributed according to P (hjS). Recent work on Markov chain Monte Carlomethods (Neal, 1993) seeks to develop a set of tools for this task.The most idealized aspect of the Bayesian analysis is the prior belief P (h). Ifthis prior completely captures all of the knowledge that we have about f beforewe obtain S, then by de�nition we cannot do better. But in practice, it is oftendi�cult to construct a space H and assign a prior P (h) that captures our priorknowledge adequately. Indeed, often H and P (h) are chosen for computationalconvenience, and they are known to be inadequate. In such cases, the Bayesiancommittee is not optimal, and other ensemble methods may produce betterresults. In particular, the Bayesian approach does not address the computationaland representational problems in any signi�cant way.2.2 Manipulating the Training ExamplesThe second method for constructing ensembles manipulates the training exam-ples to generate multiple hypotheses. The learning algorithm is run several times,each time with a di�erent subset of the training examples. This technique worksespecially well for unstable learning algorithms|algorithms whose output clas-si�er undergoes major changes in response to small changes in the training data.Decision-tree, neural network, and rule learning algorithms are all unstable. Lin-ear regression, nearest neighbor, and linear threshold algorithms are generallyvery stable.



6 The most straightforward way of manipulating the training set is called Bag-ging. On each run, Bagging presents the learning algorithm with a training setthat consists of a sample of m training examples drawn randomly with replace-ment from the original training set of m items. Such a training set is called abootstrap replicate of the original training set, and the technique is called boot-strap aggregation (from which the term Bagging is derived; Breiman, 1996). Eachbootstrap replicate contains, on the average, 63.2% of the original training set,with several training examples appearing multiple times.Another training set sampling method is to construct the training sets byleaving out disjoint subsets of the training data. For example, the training setcan be randomly divided into 10 disjoint subsets. Then 10 overlapping trainingsets can be constructed by dropping out a di�erent one of these 10 subsets.This same procedure is employed to construct training sets for 10-fold cross-validation, so ensembles constructed in this way are sometimes called cross-validated committees (Parmanto, Munro, & Doyle, 1996).The third method for manipulating the training set is illustrated by theAdaBoost algorithm, developed by Freund and Schapire (1995, 1996, 1997,1998). Like Bagging, AdaBoost manipulates the training examples to generatemultiple hypotheses. AdaBoost maintains a set of weights over the trainingexamples. In each iteration `, the learning algorithm is invoked to minimizethe weighted error on the training set, and it returns an hypothesis h`. Theweighted error of h` is computed and applied to update the weights on thetraining examples. The e�ect of the change in weights is to place more weighton training examples that were misclassi�ed by h` and less weight on examplesthat were correctly classi�ed. In subsequent iterations, therefore, AdaBoostconstructs progressively more di�cult learning problems.The �nal classi�er, hf (x) = P` w`h`(x), is constructed by a weighted voteof the individual classi�ers. Each classi�er is weighted (by w`) according to itsaccuracy on the weighted training set that it was trained on.Recent research (Schapire & Singer, 1998) has shown that AdaBoost can beviewed as a stage-wise algorithm for minimizing a particular error function. Tode�ne this error function, suppose that each training example is labeled as +1or �1, corresponding to the positive and negative examples. Then the quantitymi = yih(xi) is positive if h correctly classi�es xi and negative otherwise. Thisquantity mi is called the margin of classi�er h on the training data. AdaBoostcan be seen as trying to minimizeXi exp �yiX̀w`h`(xi)! ; (1)which is the negative exponential of the margin of the weighted voted classi�er.This can also be viewed as attempting to maximize the margin on the trainingdata.



72.3 Manipulating the Input FeaturesA third general technique for generating multiple classi�ers is to manipulatethe set of input features available to the learning algorithm. For example, in aproject to identify volcanoes on Venus, Cherkauer (1996) trained an ensembleof 32 neural networks. The 32 networks were based on 8 di�erent subsets ofthe 119 available input features and 4 di�erent network sizes. The input featuresubsets were selected (by hand) to group together features that were based ondi�erent image processing operations (such as principal component analysis andthe fast fourier transform). The resulting ensemble classi�er was able to matchthe performance of human experts in identifying volcanoes. Tumer and Ghosh(1996) applied a similar technique to a sonar dataset with 25 input features.However, they found that deleting even a few of the input features hurt theperformance of the individual classi�ers so much that the voted ensemble didnot perform very well. Obviously, this technique only works when the inputfeatures are highly redundant.2.4 Manipulating the Output TargetsA fourth general technique for constructing a good ensemble of classi�ers is tomanipulate the y values that are given to the learning algorithm. Dietterich &Bakiri (1995) describe a technique called error-correcting output coding. Supposethat the number of classes, K, is large. Then new learning problems can beconstructed by randomly partioning the K classes into two subsets A` and B`.The input data can then be re-labeled so that any of the original classes in setA` are given the derived label 0 and the original classes in set B` are giventhe derived label 1. This relabeled data is then given to the learning algorithm,which constructs a classi�er h`. By repeating this process L times (generatingdi�erent subsets A` and B`), we obtain an ensemble of L classi�ers h1; : : : ; hL.Now given a new data point x, how should we classify it? The answer is tohave each h` classify x. If h`(x) = 0, then each class in A` receives a vote. Ifh`(x) = 1, then each class in B` receives a vote. After each of the L classi�ershas voted, the class with the highest number of votes is selected as the predictionof the ensemble.An equivalent way of thinking about this method is that each class j isencoded as an L-bit codeword Cj , where bit ` is 1 if and only if j 2 B`. The`-th learned classi�er attempts to predict bit ` of these codewords. When the Lclassi�ers are applied to classify a new point x, their predictions are combinedinto an L-bit string. We then choose the class j whose codeword Cj is closest (inHamming distance) to the L-bit output string. Methods for designing good error-correcting codes can be applied to choose the codewords Cj (or equivalently,subsets A` and B`).Dietterich and Bakiri report that this technique improves the performance ofboth the C4.5 decision tree algorithm and the backpropagation neural networkalgorithm on a variety of di�cult classi�cation problems. Recently, Schapire



8(1997) has shown how AdaBoost can be combined with error-correcting out-put coding to yield an excellent ensemble classi�cation method that he calls Ad-aBoost.OC. The performance of the method is superior to the ECOC method(and to Bagging), but essentially the same as another (quite complex) algorithm,called AdaBoost.M2. Hence, the main advantage of AdaBoost.OC is imple-mentation simplicity: It can work with any learning algorithm for solving 2-classproblems.Ricci and Aha (1997) applied a method that combines error-correcting out-put coding with feature selection. When learning each classi�er, h`, they applyfeature selection techniques to choose the best features for learning that classi�er.They obtained improvements in 7 out of 10 tasks with this approach.2.5 Injecting RandomnessThe last general purpose method for generating ensembles of classi�ers is toinject randomness into the learning algorithm. In the backpropagation algorithmfor training neural networks, the initial weights of the network are set randomly.If the algorithm is applied to the same training examples but with di�erentinitial weights, the resulting classi�er can be quite di�erent (Kolen & Pollack,1991).While this is perhaps the most common way of generating ensembles of neu-ral networks, manipulating the training set may be more e�ective. A study byParmanto, Munro, and Doyle (1996) compared this technique to Bagging and to10-fold cross-validated committees. They found that cross-validated committeesworked best, Bagging second best, and multiple random initial weights thirdbest on one synthetic data set and two medical diagnosis data sets.For the C4.5 decision tree algorithm, it is also easy to inject randomness(Kwok & Carter, 1990; Dietterich, 2000). The key decision of C4.5 is to choose afeature to test at each internal node in the decision tree. At each internal node,C4.5 applies a criterion known as the information gain ratio to rank-order thevarious possible feature tests. It then chooses the top-ranked feature-value test.For discrete-valued features with V values, the decision tree splits the data intoV subsets, depending on the value of the chosen feature. For real-valued features,the decision tree splits the data into 2 subsets, depending on whether the valueof the chosen feature is above or below a chosen threshold. Dietterich (2000)implemented a variant of C4.5 that chooses randomly (with equal probability)among the top 20 best tests. Figure 3 compares the performance of a singlerun of C4.5 to ensembles of 200 classi�ers over 33 di�erent data sets. For eachdata set, a point is plotted. If that point lies below the diagonal line, then theensemble has lower error rate than C4.5. We can see that nearly all of the pointslie below the line. A statistical analysis shows that the randomized trees dostatistically signi�cantly better than a single decision tree on 14 of the data setsand statistically the same in the remaining 19 data sets.Ali & Pazzani (1996) injected randomness into the FOIL algorithm for learn-ing Prolog-style rules. FOIL works somewhat like C4.5 in that it ranks possibleconditions to add to a rule using an information-gain criterion. Ali and Pazzani



9

0

10

20

30

40

50

60

0 10 20 30 40 50 60

20
0-

fo
ld

 R
an

do
m

iz
ed

 C
4.

5 
(p

er
ce

nt
 e

rr
or

)

C4.5 (percent error)Fig. 3. Comparison of the error rate of C4.5 to an ensemble of 200 decision treesconstructed by injecting randomness into C4.5 and then taking a uniform vote.computed all candidate conditions that scored within 80% of the top-ranked can-didate, and then applied a weighted random choice algorithm to choose amongthem. They compared ensembles of 11 classi�ers to a single run of FOIL andfound statistically signi�cant improvements in 15 out of 29 tasks and statisticallysigni�cant loss of performance in only one task. They obtained similar resultsusing 11-fold cross-validation to construct the training sets.Raviv and Intrator (1996) combine bootstrap sampling of the training datawith injecting noise into the input features for the learning algorithm. To traineach member of an ensemble of neural networks, they draw training exampleswith replacement from the original training data. The x values of each trainingexample are perturbed by adding Gaussian noise to the input features. Theyreport large improvements in a synthetic benchmark task and a medical diagnosistask.Finally, note that Markov chain Monte Carlo methods for constructing Bayesianensembles also work by injecting randomness into the learning process. However,instead of taking a uniform vote, as we did with the randomized decision trees,each hypothesis receives a vote proportional to its posterior probability.3 Comparing Di�erent Ensemble MethodsSeveral experimental studies have been performed to compare ensemble methods.The largest of these are the studies by Bauer and Kohavi (1999) and by Dietterich(2000). Table 1 summarizes the results of Dietterich's study. The table showsthat AdaBoost often gives the best results. Bagging and randomized trees give



10similar performance, although randomization is able to do better in some casesthan Bagging on very large data sets.Table 1. All pairwise combinations of the four ensemble methods. Each cell containsthe number of wins, losses, and ties between the algorithm in that row and the algorithmin that column. C4.5 AdaBoost C4.5 Bagged C4.5Random C4.5 14 { 0 { 19 1 { 7 { 25 6 { 3 { 24Bagged C4.5 11 { 0 { 22 1 { 8 { 24AdaBoost C4.5 17 { 0 { 16Most of the data sets in this study had little or no noise. When 20% arti�cialclassi�cation noise was added to the 9 domains where Bagging and AdaBoostgave di�erent performance, the results shifted radically as shown in Table 2.Under these conditions, AdaBoost over�ts the data badly while Bagging isshown to work very well in the presence of noise. Randomized trees did not dovery well.Table 2. All pairwise combinations of C4.5, AdaBoosted C4.5, Bagged C4.5, andRandomized C4.5 on 9 domains with 20% synthetic class label noise. Each cell containsthe number of wins, losses, and ties between the algorithm in that row and the algorithmin that column. C4.5 AdaBoost C4.5 Bagged C4.5Random C4.5 5 { 2 { 2 5 { 0 { 4 0 { 2 { 7Bagged C4.5 7 { 0 { 2 6 { 0 { 3AdaBoost C4.5 3 { 6 { 0The key to understanding these results is to return again to the three short-comings of existing learning algorithms: statistical support, computation, andrepresentation. For the decision-tree algorithm C4.5, all three of these prob-lems can arise. Decision trees essentially partition the input feature space intorectangular regions whose sides are perpendicular to the coordinate axes. Eachrectangular region corresponds to one leaf node of the tree.If the true function f can be represented by a small decision tree, thenC4.5 will work well without any ensemble. If the true function can be correctlyrepresented by a large decision tree, then C4.5 will need a very large trainingdata set in order to �nd a good �t, and the statistical problem will arise.The computational problem arises because �nding the best (i.e., smallest)decision tree consistent with the training data is computationally intractable, soC4.5 makes a series of decisions greedily. If one of these decisions is made incor-rectly, then the training data will be incorrectly partitioned, and all subsequentdecisions are likely to be a�ected. Hence, C4.5 is highly unstable, and small



11changes in the training set can produce large changes in the resulting decisiontree.The representational problem arises because of the use of rectangular parti-tions of the input space. If the true decision boundaries are not orthogonal tothe coordinate axes, then C4.5 requires a tree of in�nite size to represent thoseboundaries correctly. Interestingly, a voted combination of small decision treesis equivalent to a much larger single tree, and hence, an ensemble method canconstruct a good approximation to a diagonal decision boundary using severalsmall trees. Figure 4 shows an example of this. On the left side of the �gureare plotted three decision boundaries constructed by three decision trees, eachof which uses 5 internal nodes. On the right is the boundary that results froma simple majority vote of these trees. It is equivalent to a single tree with 13internal nodes, and it is much more accurate than any one of the three individualtrees.
Class 1

Class 2

Class 1

Class 2Fig. 4. The left �gure shows the true diagonal decision boundary and three staircaseapproximations to it (of the kind that are created by decision tree algorithms). Theright �gure shows the voted decision boundary, which is a much better approximationto the diagonal boundary.Now let us consider the three algorithms: AdaBoost, Bagging, and Ran-domized trees. Bagging and Randomization both construct each decision treeindependently of the others. Bagging accomplishes this by manipulating the in-put data, and Randomization directly alters the choices of C4.5. These methodsare acting somewhat like Bayesian voting; they are sampling from the space ofall possible hypotheses with a bias toward hypotheses that give good accuracyon the training data. Consequently, their main e�ect will be to address the sta-tistical problem and, to a lesser extent, the computational problem. But they donot directly attempt to overcome the representational problem.In contrast,AdaBoost constructs each new decision tree to eliminate \resid-ual" errors that have not been properly handled by the weighted vote of thepreviously-constructed trees.AdaBoost is directly trying to optimize the weightedvote. Hence, it is making a direct assault on the representational problem. Di-



12rectly optimizing an ensemble can increase the risk of over�tting, because thespace of ensembles is usually much larger than the hypothesis space of the orig-inal algorithm.This explanation is consistent with the experimental results given above. Inlow-noise cases, AdaBoost gives good performance, because it is able to opti-mize the ensemble without over�tting. However, in high-noise cases, AdaBoostputs a large amount of weight on the mislabeled examples, and this leads it toover�t very badly. Bagging and Randomization do well in both the noisy andnoise-free cases, because they are focusing on the statistical problem, and noiseincreases this statistical problem.Finally, we can understand that in very large datasets, Randomization canbe expected to do better than Bagging because bootstrap replicates of a largetraining set are very similar to the training set itself, and hence, the learneddecision tree will not be very diverse. Randomization creates diversity under allconditions, but at the risk of generating low-quality decision trees.Despite the plausibility of this explanation, there is still one important openquestion concerning AdaBoost. Given that AdaBoost aggressively attemptsto maximize the margins on the training set, why doesn't it over�t more often?Part of the explanation may lie in the \stage-wise" nature of AdaBoost. Ineach iteration, it reweights the training examples, constructs a new hypothesis,and chooses a weight w` for that hypothesis. It never \backs up" and modi�esthe previous choices of hypotheses or weights that it has made to compensatefor this new hypothesis.To test this explanation, I conducted a series of simple experiments on syn-thetic data. Let the true classi�er f be a simple decision rule that tests just onefeature (feature 0) and assigns the example to class +1 if the feature is 1, andto class �1 if the feature is 0. Now construct training (and testing) examples bygenerating feature vectors of length 100 at random as follows. Generate feature0 (the important feature) at random. Then generate each of the other featuresrandomly to agree with feature 0 with probability 0.8 and to disagree otherwise.Assign labels to each training example according to the true function f , butwith 10% random classi�cation noise. This creates a di�cult learning problemfor simple decision rules of this kind (decision stumps), because all 100 featuresare correlated with the class. Still, a large ensemble should be able to do well onthis problem by voting separate decision stumps for each feature.I constructed a version ofAdaBoost that works more aggressively than stan-dard AdaBoost. After every new hypothesis h` is constructed and its weightassigned, my version performs a gradient descent search to minimize the negativeexponential margin (equation 1). Hence, this algorithm reconsiders the weightsof all of the learned hypotheses after each new hypothesis is added. Then itreweights the training examples to reect the revised hypothesis weights.Figure 5 shows the results when training on a training set of size 20. The plotcon�rms our explanation. The Aggressive AdaBoost initially has much highererror rates on the test set than Standard AdaBoost. It then gradually im-proves. Meanwhile, Standard AdaBoost initially obtains excellent performance



13on the test set, but then it over�ts as more and more classi�ers are added to theensemble. In the limit, both ensembles should have the same representationalproperties, because they are both minimizing the same function (equation 1).But we can see that the exceptionally good performance of StandardAdaBooston this problem is due to the stage-wise optimization process, which is slow to�t the data.

160

165

170

175

180

185

190

195

200

205

210

1 10 100 1000

E
rr

or
s 

(o
ut

 o
f 

10
00

) 
on

 th
e 

te
st

 d
at

a 
se

t

Iterations of Adaboost

Standard Adaboost

Aggressive Adaboost

Fig. 5. Aggressive AdaBoost exhibits much worse performance than Standard Ad-aBoost on a challenging synthetic problem4 ConclusionsEnsembles are well-established as a method for obtaining highly accurate classi-�ers by combining less accurate ones. This paper has provided a brief survey ofmethods for constructing ensembles and reviewed the three fundamental reasonswhy ensemble methods are able to out-perform any single classi�er within theensemble. The paper has also provided some experimental results to elucidateone of the reasons why AdaBoost performs so well.One open question not discussed in this paper concerns the interaction be-tween AdaBoost and the properties of the underlying learning algorithm. Mostof the learning algorithms that have been combined with AdaBoost have beenalgorithms of a global character (i.e., algorithms that learn a relatively low-dimensional decision boundary). It would be interesting to see whether localalgorithms (such as radial basis functions and nearest neighbor methods) can bepro�tably combined viaAdaBoost to yield interesting new learning algorithms.



BibliographyAli, K. M., & Pazzani, M. J. (1996). Error reduction through learning multipledescriptions. Machine Learning, 24 (3), 173{202.Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classi�cationalgorithms: Bagging, boosting, and variants. Machine Learning, 36 (1/2),105{139.Blum, A., & Rivest, R. L. (1988). Training a 3-node neural network is NP-Complete (Extended abstract). In Proceedings of the 1988 Workshop onComputational Learning Theory, pp. 9{18 San Francisco, CA. MorganKaufmann.Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123{140.Cherkauer, K. J. (1996). Human expert-level performance on a scienti�cimage analysis task by a system using combined arti�cial neural net-works. In Chan, P. (Ed.), Working Notes of the AAAI Workshopon Integrating Multiple Learned Models, pp. 15{21. Available fromhttp://www.cs.fit.edu/~imlm/.Dietterich, T. G. (2000). An experimental comparison of three methods forconstructing ensembles of decision trees: Bagging, boosting, and random-ization. Machine Learning.Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems viaerror-correcting output codes. Journal of Arti�cial Intelligence Research,2, 263{286.Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization ofon-line learning and an application to boosting. Tech. rep., AT&T BellLaboratories, Murray Hill, NJ.Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algo-rithm. In Proc. 13th International Conference on Machine Learning, pp.148{146. Morgan Kaufmann.Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Trans.Pattern Analysis and Machine Intell., 12, 993{1001.Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximationof an unknown mapping and its derivatives using multilayer feedforwardnetworks. Neural Networks, 3, 551{560.Hya�l, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees isNP-Complete. Information Processing Letters, 5 (1), 15{17.Kolen, J. F., & Pollack, J. B. (1991). Back propagation is sensitive to initialconditions. In Advances in Neural Information Processing Systems, Vol. 3,pp. 860{867 San Francisco, CA. Morgan Kaufmann.Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D.,Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Ar-ti�cial Intelligence 4, pp. 327{335. Elsevier Science, Amsterdam.



15Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo meth-ods. Tech. rep. CRG-TR-93-1, Department of Computer Science, Univer-sity of Toronto, Toronto, CA.Parmanto, B., Munro, P. W., & Doyle, H. R. (1996). Improving committeediagnosis with resampling techniques. In Touretzky, D. S., Mozer, M. C.,& Hesselmo, M. E. (Eds.), Advances in Neural Information ProcessingSystems, Vol. 8, pp. 882{888 Cambridge, MA. MIT Press.Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An e�ective regu-larization technique. Connection Science, 8 (3{4), 355{372.Ricci, F., & Aha, D. W. (1997). Extending local learners with error-correctingoutput codes. Tech. rep., Naval Center for Applied Research in Arti�cialIntelligence, Washington, D.C.Schapire, R. E. (1997). Using output codes to boost multiclass learning prob-lems. In Proceedings of the Fourteenth International Conference on Ma-chine Learning, pp. 313{321 San Francisco, CA. Morgan Kaufmann.Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the mar-gin: A new explanation for the e�ectiveness of voting methods. In Fisher,D. (Ed.), Machine Learning: Proceedings of the Fourteenth InternationalConference. Morgan Kaufmann.Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms usingcon�dence-rated predictions. In Proc. 11th Annu. Conf. on Comput. Learn-ing Theory, pp. 80{91. ACM Press, New York, NY.Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensembleclassi�ers. Connection Science, 8 (3{4), 385{404.


