
Scripting languages
• originally tools for quick hacks, rapid prototyping, gluing together

other programs, ...
• evolved into mainstream programming tools
• characteristics

– text strings as basic (or only) data type
– associative arrays as a basic aggregate type
– regular expressions (maybe) built in
– minimal use of types, declarations, etc.
– usually interpreted instead of compiled
– easy to get started with

• examples
– shell
– Awk
– Perl, PHP, Python, Ruby
– Tcl, Lua, ...
– Javascript, Actionscript
– Visual Basic, (VB|W|C)Script, PowerShell
– …

Shells and shell programming
• shell: a program that helps run other programs

– intermediary between user and operating system
– basic scripting language
– programming with programs as building blocks

• an ordinary program, not part of the system
– it can be replaced by one you like better
– therefore there are lots of shells, reflecting history and preferences

• popular shells:
– sh Bourne shell (Steve Bourne, Bell Labs -> ...)

emphasizes running programs and programmability
syntax derived from Algol 68

– csh C shell (Bill Joy, UC Berkeley -> Sun)
interaction: history, job control, command & filename completion, aliases
more C-like syntax, but not as good for programming (at least historically)

– ksh Korn shell (Dave Korn, Bell Labs -> AT&T Labs)
combines programmability and interaction
syntactically, superset of Bourne sh
provides all csh interactive features + lots more

– bash GNU shell
mostly ksh + much of csh

– tcsh
evolution of csh

Features common to Unix shells
• command execution

+ built-in commands, e.g., cd
• filename expansion

* ? [...]
• quoting

rm '*' Careful !!!
echo "It's now `date`"

• variables, environment
PATH=/bin:/usr/bin in ksh & bash
setenv PATH /bin:/usr/bin in (t)csh

• input/output redirection, pipes
prog <in >out, prog >>out
who | wc
slow.1 | slow.2 & asynchronous operation

• executing commands from a file
arguments can be passed to a shell file ($0, $1, etc.)
if made executable, indistinguishable from compiled programs

provided by the shell, not each program

Shell programming
• the shell is a programming language

– the earliest scripting language
• string-valued variables
• limited regexprs mostly for filename expansion

• control flow
– if-else

if cmd; then cmds; elif cmds; else cmds; fi (sh…)
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh)

– while, for
for var in list; do commands; done (sh, ksh, bash)
foreach var (list) commands; end (csh, tcsh)

– switch, case, break, continue, ...
• operators are programs

– programs return status: 0 == success, non-0 == various failures
• shell programming out of favor

– graphical interfaces
– scripting languages

e.g., system administration
setting paths, filenames, parameters, etc
now often in Perl, Python, PHP, ...

bundle: making "shell archives"
Use:

$ bundle foo bar >bundle.out

combines text files "foo" and "bar" into shell file that recreates foo and bar when executed

Implementation:
echo '# To unbundle, sh this file'
for i in $*
do echo "echo $i 1>&2"

echo "sed 's/-//' >$i <<'End of $i'"
sed 's/^/-/' $i
echo "End of $i"

done

Output:
To unbundle, sh this file
echo foo 1>&2
sed 's/-//' >foo <<'End of foo'
-contents of foo...
End of foo
echo bar 1>&2
sed 's/-//' >bar <<'End of bar'
-contents of bar...
End of bar

To unbundle:
$ sh bundle.out

Shell programming
• shell programs are good for personal tools

– tailoring environment
– abbreviating common operations

(aliases do the same)
• gluing together existing programs into new ones
• prototyping
• sometimes for production use

– e.g., configuration scripts

• But:
– shell is poor at arithmetic, editing
– macro processing is a mess
– quoting is a mess
– sometimes too slow
– can't get at some things that are really necessary

• this leads to scripting languages

