
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

Hierarchical clustering
implementation

• Single linkage (nearest neighbor): In this method the
distance between two clusters is determined by the
distance of the two closest objects (nearest
neighbors) in the different clusters.

• Complete linkage (furthest neighbor): In this method, the
distances between clusters are determined by the
greatest distance between any two objects in the
different clusters (i.e., by the "furthest neighbors").

• Group average linkage: In this method, the distance
between two clusters is calculated as the average
distance between all pairs of objects in the two
different clusters.

3

Single-Link Hierarchical Clustering
Iteration.
• Closest pair of clusters (i, j) is one with the smallest dist value.
• Replace row i by min of row i and row j.
• Infinity out row j and column j.
• Update dmin[i] and change dmin[i'] to i if previously dmin[i'] = j.

0 1dmin dist 2 3 4

- 5.51 5.5 7.3 8.9 5.8

5.5 -3 2.14 6.1 2.14 5.6

7.3 6.14 5.6 - 7.8 5.6

8.9 2.141 2.14 7.8 - 5.5

5.8 5.63 5.5 5.6 5.5 -

gene0

1

2

3

4

0 1dmin dist 2 3 4

- 5.51 5.5 7.3 - 5.8

5.5 -0 5.5 6.1 - 5.5

7.3 6.14 5.6 - - 5.6

- -- - - - -

5.8 5.51 5.5 5.6 - -

0

node1

2

3

4

0

1

2

3

4

0

1

2

3

4

Closest
pair

Gene1 closest
to gene3,
dist=2.14

New min dist

i=1, j=3

4

Single-Link Clustering: Java Implementation

Single-link clustering.
• Read in the data.

public static void main(String[] args) {

int M = StdIn.readInt();

int N = StdIn.readInt();

// read in N vectors of dimension M

Vector[] vectors = new Vector[N];

String[] names = new String[N];

for (int i = 0; i < N; i++) {

names[i] = StdIn.readString();

double[] d = new double[M];

for (int j = 0; j < M; j++)

d[j] = StdIn.readDouble();

vectors[i] = new Vector(d);

}

5

Single-Link Clustering: Java Implementation

Single-link clustering.
• Read in the data.
• Precompute d[i][j] = distance between cluster i and j.
• For each cluster i, maintain index dmin[i] of closest cluster.

double INFINITY = Double.POSITIVE_INFINITY;

double[][] d = new double[N][N];

int[] dmin = new int[N];

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

if (i == j) d[i][j] = INFINITY;

else d[i][j] = vectors[i].distanceTo(vectors[j]);

if (d[i][j] < d[i][dmin[i]]) dmin[i] = j;

}

}

6

Single-Link Clustering: Main Loop
for (int s = 0; s < N-1; s++) {

// find closest pair of clusters (i1, i2)

int i1 = 0;

for (int i = 0; i < N; i++)

if (d[i][dmin[i]] < d[i1][dmin[i1]]) i1 = i;

int i2 = dmin[i1];

// overwrite row i1 with minimum of entries in row i1 and i2

for (int j = 0; j < N; j++)

if (d[i2][j] < d[i1][j]) d[i1][j] = d[j][i1] = d[i2][j];

d[i1][i1] = INFINITY;

// infinity-out old row i2 and column i2

for (int i = 0; i < N; i++)

d[i2][i] = d[i][i2] = INFINITY;

// update dmin and replace ones that previous pointed to

// i2 to point to i1

for (int j = 0; j < N; j++) {

if (dmin[j] == i2) dmin[j] = i1;

if (d[i1][j] < d[i1][dmin[i1]]) dmin[i1] = j;

}

}

7

Store Centroids in Each Internal Node

Cluster analysis.
Centroids distance / similarity.

Easy modification to TreeNode data
structure.
• Store Vector in each node.

• leaf nodes: directly corresponds to a gene
• internal nodes: centroid = average of all leaf
nodes beneath it

• Maintain count field in each TreeNode, which
equals the number of leaf nodes beneath it.

• When setting z to be parent of x and y,
•set z.count = x.count + y.count
•set z.vector = p + (1-)q, where p = x.vector and
q = y.vector, and  = x.count / z.count

8

Analysis and Micro-Optimizations

Running time. Proportional to MN2 (N genes, M arrays)
Memory. Proportional to N2.

Ex. [M = 50, N = 6,000] Takes 280MB, 48 sec on
fast PC.

Some optimizations.
• Use float instead of double
• Store only lower triangular part of distance matrix
• Use squares of distances instead of distances.

input size proportional to MN

• use float to decrease memory usage by a factor of 2x, but
probably doesn't make it faster
• storing only lower triangular part decreases memory usage by a
factor of 2x and makes things somewhat faster
• only about 10% of time is spent precomputing distance matrix, so
avoiding square roots will help, but not that much

How much do you think would this help?

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

Sequence!

Some slides from Mona Singh, Serafim Batzoglou, Olga Troyanskaya

Bio-Sequences

Complete genomes of >1000 organisms
www.ncbi.nlm.nih.gov/Genomes/index.html

> 100 billion bases in Genbank (ncbi)

>509,000 proteins in SWISSPROT (hand
curated); >9,300,000 proteins in TREMBL
(computer annotated).

us.expasy.org/sprot

http://www.ncbi.nlm.nih.gov/Genomes/index.html
http://www.ncbi.nlm.nih.gov/Genomes/index.html

Next Gen Sequencers

Illumina/Solexa High Throughput

Sequencing Machine

>20 billion bases per run!

Illumina’s Spring 2009

charge for sequencing your

genome:

$48,000 – 30 fold

coverage

Biomolecules as Strings

Macromolecules are the chemical
building blocks of cells

• Proteins
•20 amino acids

• Nucleic acids
•4 nucleotides {A, C, G, ,T}

Role of Evolution

Molecular structures and mechanisms are
reused and changed during evolution

Often mechanisms that are conserved can be
detected based on sequence similarity

Powerful tool for annotation

Ex: Protein Sequences

Horse vs Human Myoglobin (Global alignment of sequences)

GLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASED

GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED

LKKHGTVVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKHP

LKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHP

GDFGADAQGAMTKALELFRNDIAAKYKELGFQG

GDFGADAQGAMNKALELFRKDMASNYKELGFQG

Same protein in two different organisms, can ID based on sequence
similarity – 88% identical

Myoglobin - intracellular storage of oxygen

Global alignment: Issues with transferring
annotations

Horse Myoglobin vs Human Hemoglobin Alpha

MGLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASEDL

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKG----

KKHGTVVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKHPG

--HGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA

DFGADAQGAMTKALELFRNDIAAKYKELGFQG

EFTPAVHASLDKFLASVSTVLTSKYR------

~25% identical; other “similar” amino acids
Myoglobin - intracellular storage of oxygen
Hemoglobin - transports oxygen

Basic Tool to Detect Sequence
Similarity: Alignments

Given:
• a pair (or more) of sequences (DNA or

protein)
• a method for scoring the similarity of a

pair of characters (=bases or amino acids)
Determine: correspondences between

characters in the sequences such that the
similarity score is maximized

Pairwise global aligment

Given two sequences, a scoring scheme with a
gap function, line up the sequences (with
insertion of gaps) to maximize the score

E.g., match = 1
mismatch = -1
gap = -2

E.g., say your two sequences are
AACAGTTACC, TAAGGTCA

AACAGTTACC
TA-AGGT-CA

Score = ?

Naïve way to find optimal alignments

1. Enumerate all possible alignments

2. Score all possible alignments

3. Take best scoring alignment

4. Problem: There are too many possible
alignments between 2 sequences !!

5. Solution: dynamic programming

• RECALL: homework assignment from last term!

Pairwise Alignment

Needleman & Wunsch, Journal of Molecular
Biology, 1970

Dynamic programming (DP): general technique
to solve an instance of a problem by taking
advantage of computed solutions for
smaller subparts of the problem

Here, determine alignment of two sequences
by determining alignment of all suffixes of
the sequences

• (suffixes are subparts we’ll save solutions for…)

Dynamic Programming Idea

Say aligning AAAC with AGC

Consider what happens in the first column

Three possible options; each corresponds to
different alignment of first column, choose each
one and add this to best alignment of suffixes

AAC

GC

A AAAC

A GC

-

AAC

- AGC

A
Score of

aligning

these characters

Consider best

Alignment of

these suffixes
+

A

Dynamic Programming Idea

AAC

GC

A

AAAC

A GC

-

AAC

- AGC

A

A

If we knew answers to
these three subproblems,
then we’d know the best
alignment score between
AAAC and AGC

Consider minimum of
these
three cases

Dynamic Programming Idea

Given an m-character sequence s, and an n-
character sequence t construct an (m+1) x
(n+1) matrix sim where we’ll store answers
to subproblems

sim[i, j] = score of the best alignment
of the suffix i…m of s with the suffix j…n
of t.

Aligning AAAC with AGC

A

A

CA G

A

C

s

t

Best alignment
score of AC
with GC

Best alignment
score of AAAG
with C

Dynamic Programming Rule

sim[i, j] sim[i, j+1]

sim[i+1, j] sim[i+1, j+1]

+ g

+ g + sc(s[i],t[j])

(gap
cost)

(gap cost)

(similarity score
between
s[i] and t[j])

26

How long does DP take?

Dynamic programming matrix

Target sequence of length m

Q
ue

ry
 s

e
qu

e
nc

e
 o

f
le

ng
th

 n

27

How long does DP take?

Dynamic programming matrix

Target sequence of length m

Q
ue

ry
 s

e
qu

e
nc

e
 o

f
le

ng
th

 n
There are nm
entries in the

matrix.

Each entry requires
a constant number c

of operations.

The total number of required operations is approximate nmc.
We say that the algorithm is “order nm” or “O(nm).”

Local Alignment
Just described global alignment, where we

are looking for best match between
sequences from one end to the other.

Often (and more commonly), we will want a
local alignment, the best match between
subsequences of s and t.

Local Alignment DP Algorithm

Original formulation: Smith & Waterman,
Journal of Molecular Biology, 1981

Interpretation of array values is different
from global sequence alignment

sim [i, j] = score of the best alignment of
a prefix of the i..m suffix of s and a
prefix of the j…n suffix of t

Algorithm is simple modification of DP just
described - whenever score goes below 0,
start from scratch !

I.e., consider four cases and take max

Database search

Given a sequence of interest, can you
find other similar sequences (to get a
hint about structure/function)?

• E.g, NCBI BLAST site
•Input sequence, gives back all significant
sequence matches

•Performs local alignments

Heuristic Methods for Sequence Database
Searching

Quadratic algorithm too slow for large
databases with high query traffic heuristic
methods do fast approximation to dynamic
programming

• FASTA [Pearson & Lipman (1988) PNAS 85,
p2444]
•http://www2.ebi.ac.uk/fasta3

• BLAST [Altschul et al. (1990) JMB 215,
p403]
•http://www.ncbi.nlm.nih.gov/BLAST

http://www2.ebi.ac.uk/fasta3
http://www2.ebi.ac.uk/fasta3
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST

Speeding up searches

Give up optimality, use heuristics

For a query sequence, require its
matches to share a k-mer exactly
(e.g., k=11)

Fundamental innovation: use hashing (or
other search data structures) to find
(quickly) places in database where
each k-mer in the query sequence
occurs

32

33

BLAST algorithm

• Remove low-complexity regions.

• Make a list of all words of length 3 amino acids or 11 nucleotides.

• Augment the list to include similar words.

• Scan the database for occurrences of the words

• Connect nearby occurrences.

• Extend the matches.

• Prune the list of matches using a score threshold.

• Evaluate the significance of each remaining match.

• Very important !

• Perform Smith-Waterman to get an alignment.

BLAST Notes

May fail to find all high-scoring segment pairs
-Heuristic approach

Empirically, more than an order of magnitude faster
than Smith-Waterman

Large impact:
• NCBI’s BLAST server handles thousands of

queries a day
• most used (and cited) bioinformatics program

