
Princeton University
COS 217: Introduction to Programming Systems

Emacs Tutorial

This tutorial describes how to use a minimal subset of the Emacs editor. See the Emacs summary sheet
distributed in precept for more information. Also see Chapter 3 of our Programming with GNU Software
(Loukides & Oram) textbook, and http://www.gnu.org/software/emacs/.

The tutorial assumes that you have copied the file /u/cos217/.emacs to your home directory, as described in
the "A Minimal COS 217 Computing Environment" handout from our first precept. It also assumes that
you have copied files named hello.c, circle.c, and testintmath.c into your working directory. (Those files
contain C programs that we will describe in upcoming precepts.) Those files are available in the directory
/u/cos217/emacstestfiles. You can issue this command:

cp /u/cos217/emacstestfiles/* .

 to copy them to your working directory.

Throughout the tutorial text in boldface indicates hands-on activities.

Background

Emacs was created in the mid 1970s by Richard Stallman. Originally it was a set of "editing macros" for
an editor that now is extinct.

Emacs is popular, for a few reasons. Emacs is:

• Free. It's a component of the GNU tool set from the Free Software Foundation.

• Highly customizable. Emacs is written in the LISP programming language, and is easy to
customize via that language.

• Integrated with other GNU software. In particular, Emacs is integrated with the Bash history

mechanism. Essentially you can think of the Bash history list as a "file"; you can use Emacs
commands to scroll through and edit that file, and thereby easily reissue previous commands or
variants thereof. Emacs also is integrated with the GCC compiler driver, as this tutorial describes.
Finally, and probably most importantly, Emacs is integrated with GDB debugger. A future
precept will describe that integration.

Emacs is a "modal" editor. That is, at any given time, Emacs is in one of several modes. In the COS 217
course you will use "C mode," "Assembler mode," and "Text mode." Emacs determines its mode based
upon filename extensions. If the current file has a name whose extension is ".c", then Emacs will be in "C
mode." If the current file has a name whose extension is ".s", then Emacs will be in "Assembler mode."
By default, Emacs is in "Text mode."

Launching Emacs

To launch Emacs, issue the emacs command followed by the name of the file that you wish to create or
edit. For example, issue this command at the Bash prompt:

Page 1 of 6

emacs testintmath.c

Emacs loads the contents of the testintmath.c into a buffer in memory, and displays that buffer in the
window. It places the point over the first character in the first line of the buffer.

Note the Emacs terminology: A buffer is an area of memory. A window is a graphical entity that displays
the contents of a specified buffer. The point is a small black box which overlays a character, thus
indicating which character is the "current" character.

Notation

Throughout this document:

• "Esc somechar" means "type the Esc key followed by the somechar key."
• "Ctrl-somechar" means "type the somechar key while holding down the Ctrl key."

for any character somechar.

Incidentally, "Alt-somechar" (that is, type the somechar key while holding down the Alt key) has the
same effect in Emacs as "ESC somechar" does.

The .emacs File

When you launch Emacs, it looks for a file named .emacs in your home directory. If Emacs finds that file,
it assumes that the file contains configuration function calls, and executes them.

Take a look at the .emacs file that you've copied to your home directory. Issue the command "cat
.emacs" to do that. The file is thoroughly commented; please study it at your leisure. In particular, note
this line:

(setq c-default-style "ellemtel")

As described below, Emacs automatically indents your C code according to whatever indentation style you
specify. That line sets the indentation style to "ellemtel." The commented-out lines that immediately
follow in the .emacs file show the names of some other styles. Any of those styles is fine in the context of
the COS 217 course. Experiment! See which you like best.

Calling Functions

In Emacs, all work is accomplished by calling functions. The syntax for calling a function is:

Esc x function

For example, the forward-char function moves the point forward one character:

Esc x forward-char

Emacs moves the point forward one character within the buffer each time you call the forward-char
function. Call forward-char a few times.

Clearly there must be a better way to move the point! More generally, there must be a better way to call
often-used functions.

Page 2 of 6

Key Bindings

There indeed is a better way. The most often-used functions are bound to keystrokes.

For example, the forward-char function is bound to the keystroke Ctrl-f. Type Ctrl-f a few
times. The forward-char function also is bound to the right-arrow key. Type the right-arrow key a
few times.

Many keystrokes are bound by default. You also can bind your own, typically by placing a function call of
this form in your .emacs file:

(global-set-key keystrokes 'function)

But few new Emacs users create their own keystroke bindings.

Moving the Point

The simplest way to move the point is via the forward-char, backward-char, next-line and
previous-line functions, each of which is bound to an arrow key. Type the arrow keys to move the
point right, left, down, and up several times.

The beginning-of-line and end-of-line functions have intuitive meanings. They are bound to
the Ctrl-a and Ctrl-e keystrokes, respectively. They may also be bound to the Home and End keys,
respectively; but Home and End may or may not work with your terminal emulation software. Type
Ctrl-a, Ctrl-e, Home, and End several times.

Perhaps counter-intuitively, the scroll-up function moves the window downward in the buffer;
equivalently, it moves the buffer upward in the window. The scroll-up function is bound to Ctrl-v,
and also may be bound to the PageDn key. The scroll-down function moves the window upward in
the buffer. That is, it moves the buffer downward in the window. The scroll-down function is bound
to ESC v, and also may be bound to the PageUp key. Type Ctrl-v, PageDn, ESC v, and PageUp
several times.

The end-of-buffer function moves the point to the end of the buffer; it is bound to Esc >. The
beginning-of-buffer function moves the point to the beginning of the buffer; it is bound to the Esc
<. Type Esc > and Esc < several times.

The goto-line function allows you to specify, by number, the line to which the point should be moved.
It is bound to the Ctrl-x l (that's Ctrl-x followed by the "ell" key) keystroke sequence. Type Ctrl-x
l, followed by some reasonable line number, followed by the Enter key.

Inserting and Deleting

To insert a character, move the point to the character before which the insertion should occur, and then type
the character. Move the point to some arbitrary spot in the buffer, and type some characters.

The c-electric-backspace function (bound to the Backspace key) deletes the character before
the point. Move the point to some arbitrary spot in the buffer, and type Backspace several times.
The c-electric-delete-forward function (bound to Ctrl-d) deletes the character at the point.
Move the point to some arbitrary spot in the buffer, and type Ctrl-d several times.

Page 3 of 6

To delete a line, move the point to the beginning of the line and then call the kill-line function (bound
to Ctrl-k). Calling the function once kills the characters comprising the line, but not the line's end-of-
line mark. Calling the function a second time also kills the end-of-line mark. Move the point to the
beginning of some arbitrary line, and type Ctrl-k several times.

Actually, the kill-line function doesn't completely discard the line that it kills; instead it moves the
line to the Emacs clipboard. The yank function (bound to Ctrl-y) copies ("yanks") the line from the
Emacs clipboard into the buffer at the point. The combination of the kill-line and yank functions
provides a single-line cut-and-paste functionality, as this sequence illustrates:

• Move the point to the beginning of some non-empty line that you wish to move.
• Type Ctrl-k twice.
• Move the point.
• Type Ctrl-y.

For multiple-line cut-and-paste, you must know about Emacs regions. A region is an area of text that is
bounded by the point and the mark. The set-mark-command function (bound to Ctrl-Space) sets
the mark. The kill-region function (bound to Ctrl-w) moves the region to the Emacs clipboard;
effectively it wipes out the region. This sequence illustrates moving multiple contiguous lines from one
place to another in the buffer:

• Move the point to the beginning of the first line that you wish to move.
• Type Ctrl-Space to set the mark.
• Move the point to the end of the last line that you wish to move. Note that Emacs highlights

the region thus bounded by the point and the mark.
• Type Ctrl-w to "wipeout" the region. Emacs moves the region to its clipboard.
• Move the point to some spot in the buffer
• Type Ctrl-y to yank (that is, copy) the text from the clipboard to the buffer at the point.

(Note that the "minimal computing environment" described in our first precept is completely mouseless.
To use the mouse, you can install an X Window System Server on your computer, as described in a
forthcoming listserv message.)

Saving and Exiting

The save-buffer function (bound to Ctrl-x Ctrl-s) saves the buffer, that is, copies the contents of
the buffer to its file on disk. Type Ctrl-x Ctrl-s to save the buffer to the testintmath.c file. As its
name implies, the save-buffers-kill-emacs function (bound to Ctrl-x Ctrl-c) saves all
Emacs buffers to their respective files on disk, and exits Emacs. (The section of this tutorial entitled
"Managing Windows and Buffers" describes how you can use more than one Emacs buffer
simultaneously.) Type Ctrl-x Ctrl-c to exit Emacs, thus returning to the Bash prompt.

Indenting

At this point testintmath.c probably is seriously mangled. So recopy the testintmath.c file from the
/u/cos217/emacstestfiles directory to your working directory. Then issue the command emacs
testintmath.c to relaunch Emacs to edit the testintmath.c file.

Emacs automatically indents C code as you type it, according to the indentation style that you specified in
your .emacs file.

The c-indent-command function (bound to the Tab key) indents the current line according to the
chosen indentation style. Note that the Tab key does not insert a tab character into your file; rather it

Page 4 of 6

indents the current line. Intentionally mal-indent a line, move the point to any spot within that line,
and type the Tab key.

The indent-all function (bound to Ctrl-x p because it indents your code perfectly) indents all lines
of the buffer according to the chosen indentation style. Intentionally mal-indent multiple lines scattered
throughout the buffer, and then type Ctrl-x p.

Searching and Replacing

The isearch-forward function (bound to Ctrl-s) incrementally searches forward through the buffer
for the text that you specify. This sequence illustrates:

• Move the point to the beginning of the buffer.
• Type Ctrl-s, followed by the text "i1"
• Type Ctrl-s repeatedly.
• Move the point, thereby ending the search.

The similar isearch-backward function (bound to Ctrl-r) incrementally searches backward through
the buffer.

The query-replace function (bound to Esc %) incrementally replaces the "old" text that you specify
with the "new" text that you specify. During execution of the function, typing "y" commands Emacs to
perform the replacement and continue executing the function, "n" commands Emacs to skip the
replacement and continue executing the function, "!" command Emacs to perform all replacements and stop
executing the function, and "q" commands Emacs to stop (quit) executing the function. For example:

• Move the point to the beginning of the buffer.
• Type Esc %, followed by "i1", followed by "xxx".
• Type "y" and "n" a few times.
• Type "q".
• Move the point to the beginning of the buffer.
• Type Esc %, followed by "xxx", followed by "i1".
• Type "!".

Managing Windows and Buffers

Recall that, in Emacs jargon, a buffer is a region of memory, and a window is a graphical area which
displays the contents of a buffer. So far in this tutorial you've used only one buffer and one window. More
generally, at any given time, Emacs will be managing multiple buffers and will be displaying some (but not
necessarily all) of them in windows.

To "find" a file means to load it into a buffer. The find-file function (bound to Ctrl-x Ctrl-f)
finds the file whose name you provide. Type Ctrl-x Ctrl-f hello.c followed by the Enter key
to load the hello.c file into a buffer. Then type Ctrl-x Ctrl-f circle.c followed by the Enter
key to load the circle.c file into a buffer. At this point Emacs is managing three buffers; one of them is
displayed in a window.

The split-window-vertically function (bound to Ctrl-x 2) splits the current window into two
windows, each of which displays the same buffer. Type Ctrl-x 2 to split the current window into
two windows. The other-window function (bound to Ctrl-x o) moves the point to the other
window. Type Ctrl-x o a few times to move the point back-and-forth between the two windows. Now
type Ctrl-x Ctrl-f testintmath.c to find the testintmath.c file. At this point Emacs is
managing three buffers; two of them are displayed in Emacs windows.

Page 5 of 6

The delete-other-window function (bound to Ctrl-x 1) deletes the other window (that is, the
window in which the point does not reside), thus returning Emacs to its default one-window state. Type
Ctrl-x o as necessary to move the point to the window that displays the testintmath.c buffer. Type
Ctrl-x 1 to delete the window that displays the circle.c buffer, leaving only the window that displays the
testintmath.c buffer. At this point Emacs is managing three buffers; only one of them – the testintmath.c
buffer – is displayed in a window.

With today's windowing operating systems, the ability of Emacs to manage multiple windows is less
important than it used to be. However, you must know about Emacs windows to (1) use GDB within
Emacs, as will be described in an upcoming precept, and (2) build within Emacs, as described in the next
section of this tutorial.

Building

Most COS 217 students build (that is, preprocess, compile, assemble, and link) C programs by issuing the
gcc217 command at the shell prompt. An alternative is to build C programs by issuing the gcc217
command from within Emacs. The alternative approach is optional in the COS 217 course.

The compile function (no keystroke binding) builds a C program from within Emacs using whatever
command you specify. This sequence illustrates:

• Intentionally introduce some compiletime errors into testintmath.c. Specifically, change the
return type of the gcd() function from "int" to "it", and change the last line of the gcd()
function from "return iFirst" to "retrn iFirst".

• Type Ctrl-x Ctrl-s to save the testintmath.c buffer to disk.
• Type Esc x compile. Emacs assumes that you wish to use the "make –k" command to build.

At this point in the course, that's incorrect. So type the Backspace key repeatedly to delete
that command. Then type:
gcc217 testintmath.c –o testintmath.

• Type the Enter key. Emacs opens a "compilation" window, displaying error messages.
• Type Ctrl-x o to move the point to the compilation window.
• Move the point to one of the error messages, and type the Enter key. Emacs moves the point

to the other window, to the offending line.
• Correct the offending line.
• Use the same approach to correct the second offending line, and thus build successfully.

Miscellaneous Functions

The undo function (bound to Ctrl-_) undoes the previously executed function. Move the point to some
arbitrary spot in the buffer, type the Backspace key to delete a character, and then type Ctrl-_ to
undo that change.

The keyboard-quit function (bound to Ctrl-g) aborts a multi-keystroke function call. Type Ctrl-
x to begin a keystroke sequence that calls a function; then type Ctrl-g to abort the function call. Type
Esc x to begin a keystroke sequence that calls a function; then type Ctrl-g to abort the function call.

The linum function (bound to Ctrl-x n) toggles the display of line numbers on the left side of the
window. Type Ctrl-x n to display line numbers; then type Ctrl-x n to undisplay them.

Type Ctrl-x Ctrl-c to save all buffers and exit Emacs, thus ending the tutorial.

Copyright © 2009 by Robert M. Dondero, Jr.

Page 6 of 6

