
7.8  Intractability 

Introduction to Computer Science     ·     Robert Sedgewick and Kevin Wayne     ·     Copyright © 2008     ·     *  * 
 2 

Q.  Which algorithms are useful in practice? 

A.  [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] 

  Model of computation = deterministic Turing machine. 
  Measure running time as a function of input size N. 
  Useful in practice ("efficient") = polynomial time for all inputs. 

Theory.  Definition is broad and robust. 
Practice.  Poly-time algorithms scale to huge problems. 

A Reasonable Question about Algorithms 

Ex 1.  Sorting N elements takes N2 steps using insertion sort. 

Ex 2.  Finding best TSP tour on N elements takes N! steps using exhaustive search. 

constants a and b tend to be small 

a Nb
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Exponential Growth 

Exponential growth dwarfs technological change. 
  Suppose you have a giant parallel computing device… 
  With as many processors as electrons in the universe… 
  And each processor has power of today's supercomputers… 
  And each processor works for the life of the universe… 

  Will not help solve 1,000 city TSP problem 
via brute force. 

quantity 

electrons in universe † 

supercomputer instructions per second 

value 

1079 

1013 

age of universe in seconds † 1017 

†  estimated 

1000!  >>  101000  >>  1079 × 1013 × 1017 
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Q.  Which problems can we solve in practice? 
A.  Those with guaranteed poly-time algorithms. 

Q.  Which problems have guaranteed poly-time algorithms? 
A.  Not so easy to know.  Focus of today's lecture. 

Reasonable Questions about Problems 

no known poly-time algorithm for TSP many known poly-time algorithms for sorting 
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LSOLVE.  Given a system of linear equations, find a solution. 

LP.   Given a system of linear inequalities, find a solution. 

ILP.  Given a system of linear inequalities, find a binary solution. € 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

Three Fundamental Problems 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

each xi is either 0 or 1
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LSOLVE.  Given a system of linear equations, find a solution. 
LP.   Given a system of linear inequalities, find a solution. 
ILP.  Given a system of linear inequalities, find a binary solution. 

Q.  Which of these problems have poly-time solutions? 
A.  No easy answers. 

    LSOLVE.  Yes.  Gaussian elimination solves N-by-N system in N3 time. 
    LP.  Yes.  Ellipsoid algorithm is poly-time. 
    ILP.  No poly-time algorithm known or believed to exist! 

Three Fundamental Problems 

? 

√ 
√ open problem for decades 
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Search Problems 

Search problem.  Given an instance I of a problem, find a solution S.  
Requirement.  Must be able to efficiently check that S is a solution. 

poly-time in size of instance I 

or report none exists 
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Search Problems 

Search problem.  Given an instance I of a problem, find a solution S.  
Requirement.  Must be able to efficiently check that S is a solution. 

LSOLVE.  Given a system of linear equations, find a solution. 

  To check solution S, plug in values and verify each equation.  

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

or report none exists 

poly-time in size of instance I 

instance I solution S
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€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

Search Problems 

Search problem.  Given an instance I of a problem, find a solution S.  
Requirement.  Must be able to efficiently check that S is a solution. 

LP.  Given a system of linear inequalities, find a solution. 

  To check solution S, plug in values and verify each inequality.  

or report none exists 

poly-time in size of instance I 

instance I solution S
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Search Problems 

Search problem.  Given an instance I of a problem, find a solution S.  
Requirement.  Must be able to efficiently check that S is a solution. 

ILP.  Given a system of linear inequalities, find a binary solution. 

  To check solution S, plug in values and verify each inequality 
(and check that solution is 0/1).  

instance I solution S


or report none exists 

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

poly-time in size of instance I 
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Search Problems 

Search problem.  Given an instance I of a problem, find a solution S.  
Requirement.  Must be able to efficiently check that S is a solution. 

FACTOR.  Find a nontrivial factor of the integer x. 

  To check solution S, long divide 193707721 into 147573952589676412927.  

147573952589676412927 

or report none exists 

poly-time in size of instance I 

193707721 

instance I solution S


input size = number of bits 
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Def.  NP is the class of all search problems. 

Significance.  What scientists and engineers aspire to compute feasibly. 

8784561 

problem description poly-time 
algorithm instance I
 solution S 

ILP 
 (A, b)


Find a binary vector x 
that satisfies Ax ≤ b. ??? 

FACTOR 
 (x)


Find a nontrivial factor 
of the integer x. ??? 10657 

LP 
(A, b)


Find a vector x that 
satisfies Ax ≤ b. ellipsoid 

LSOLVE 
 (A, b)


Find a vector x that 
satisfies Ax = b. 

Gaussian 
elimination 

NP 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

classic definition limits NP to yes-no problems 
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P 

Def.  P is the class of search problems solvable in poly-time. 

Significance.  What scientists and engineers compute feasibly. 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

problem description poly-time algorithm instance I solution S 

LSOLVE 
(A, b)


Find a vector x that 
satisfies Ax = b. 

Gaussian elimination 
(Edmonds, 1967) 

LP 
(A, b)


Find a vector x that 
satisfies Ax ≤ b. 

ellipsoid 
(Khachiyan, 1979) 

SORT 
(a)


Find permutation that 
puts a in ascending order. 

mergesort 
(von Neumann 1945) 

2.3 8.5 1.2 

9.1 2.2 0.3 
5 2 4 0 1 3 

STCONN 
(G, s, t)


Find a path from s to t 
in digraph G. 

depth-first search 
(Theseus) 

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

classic definition limits P to yes-no problems 
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Extended Church-Turing Thesis 

Extended Church-Turing thesis. 

Evidence supporting thesis.  True for all physical computers. 

Implication.  To make future computers more efficient, 
suffices to focus on improving implementation of existing designs. 

A new law of physics?  A constraint on what is possible. 
Possible counterexample?  Quantum computers. 

P = search problems solvable in poly-time in this universe. 

15 

P vs. NP 
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Automating Creativity 

Q.  Being creative vs. appreciating creativity? 

Ex.  Mozart composes a piece of music; our neurons appreciate it. 
Ex.  Wiles proves a deep theorem; a colleague referees it. 
Ex.  Boeing designs an efficient airfoil; a simulator verifies it. 
Ex.  Einstein proposes a theory; an experimentalist validates it. 

Computational analog.  Does P = NP? 

creative ordinary 
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P.  Class of search problems solvable in poly-time. 
NP.  Class of all search problems. 

Does P = NP?   Can you always avoid brute-force searching and do better? 

Two worlds. 

If yes…  Poly-time algorithms for 3-SAT, ILP, TSP, FACTOR, … 
If no…  Would learn something fundamental about our universe. 

Overwhelming consensus.  P ≠ NP. 

The Central Question 

P ≠ NP P = NP 

EXP 
P = NP 

NP 

P 
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The Simpsons:  P = NP? 

Copyright © 1990, Matt Groening 
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Futurama:  P = NP? 

Copyright © 2000, Twentieth Century Fox 
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Fame and Fortune through CS 

Some writers for the Simpsons and Futurama. 
  J. Steward Burns.  M.S. in mathematics, Berkeley, 1993. 
  David X. Cohen.  M.S. in computer science, Berkeley, 1992. 
  Al Jean.  B.S. in mathematics, Harvard, 1981. 
  Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990. 
  Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989. 
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Classifying Problems 
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Literal.  A Boolean variable or its negation. 

Clause.  An or of 3 distinct literals. 

Conjunctive normal form.  An and of clauses. 

3-SAT.  Given a CNF formula Φ consisting of k clauses over N variables, 
find a satisfying truth assignment (if one exists). 

Key application.  Electronic design automation (EDA). 

A Hard Problem:  3-Satisfiability 

€ 

Cj = x1 or ′ x 2 or x3
€ 

xi  ,    ′ x i

€ 

Φ =  C1 and C2 and C3 and C4

€ 

x1 = true,  x2 = true,  x3 = false,  x4 = trueyes:

€ 

Φ  =  ′ x 1 or x2 or x3( )  and  x1 or ′ x 2 or x3( )  and  ′ x 1 or ′ x 2 or ′ x 3( )  and  ′ x 1 or ′ x 2 or x4( )

23 

Q.  How to solve an instance of 3-SAT with N variables? 
A.  Exhaustive search:  try all 2N truth assignments. 

Q.  Can we do anything substantially more clever? 
Conjecture.  No poly-time algorithm for 3-SAT.  

Exhaustive Search 

"intractable" 
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Classifying Problems 

Q.  Which search problems are in P? 
A.  No easy answers (we don't even know whether P = NP). 

Goal.  Formalize notion: 

Problem X is computationally not much harder than problem Y.
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Def.  Problem X reduces to problem Y if you can use an efficient solution
 to Y to develop an efficient solution to X: 

To solve X, use: 
  A poly number of standard computational steps, plus 
  A poly number of calls to a method that solves instances of Y. 

Reductions 

instance I 
(of X) 

method for solving X


solution S to I
method for 
solving Y


"Cook reduction" 
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3-SAT your research problem 

previously solved problem your research problem 

instance I 
(of X) 

method for solving X


solution S to I
method for 
solving Y


Reductions:  Consequences 

Def.  Problem X reduces to problem Y if you can use an efficient solution
 to Y to develop an efficient solution to X: 

Design algorithms.  If poly-time algorithm for Y, then one for X too. 
Establish intractability.  If no poly-time algorithm for X, then none for Y. 
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LSOLVE Reduces to LP 

LSOLVE.  Given a system of linear equations, find a solution. 

LP.  Given a system of linear inequalities, find a solution. 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

0x0 +  1x1 +  1x2 ≤   4
0x0 +  1x1 +  1x2 ≥    4
2x0 +  4x1 −  2x2 ≤   2
2x0 +  4x1 −  2x2 ≥    2
0x0 +  3x1 + 15x2 ≤ 36
0x0 +  3x1 + 15x2 ≥   36

€ 

⇒   0x0  +  1x1  +  1x1  =  4

LSOLVE instance with n variables


corresponding LP instance with n variables and 2n inequalities
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3-SAT Reduces to ILP 

3-SAT.  Given a CNF formula Φ, find a satisfying truth assignment. 

ILP.  Given a system of linear inequalities, find a binary solution. 

€ 

C1 ≥ 1 −  x1

C1 ≥ x2

C1 ≥ x3

C1 ≤ (1 −  x1)  +  x2  +  x3

€ 

Φ ≤ C1

Φ ≤ C2

Φ ≤ C3

Φ ≤ C4

Φ ≥ C1  +  C2  +  C3  +  C4  −  3

Φ = 1 iff C1 = C2 = C3 = C4 = 1 C1 = 1 iff clause 1 is satisfied�
(similar inequalities for C2, C3, and C4)


corresponding ILP instance with n + k + 1 variables and 4k + k + 1 inequalities�
(solution to this ILP instance gives solution to original 3-SAT instance)


3-SAT instance with n variables, k clauses

€ 

Φ  =  ′ x 1 or x2 or x3( )  and  x1 or ′ x 2 or x3( )  and  ′ x 1 or ′ x 2 or ′ x 3( )  and  ′ x 1 or ′ x 2 or x4( )
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More Reductions From 3-SAT 

Dick Karp 
'85 Turing award 

3-SAT 

 3DM  VERTEX COVER 

HAM-CYCLE CLIQUE 

INDEPENDENT SET 

3-COLOR 

PLANAR-3-COLOR EXACT COVER 

HAM-PATH SUBSET-SUM 

PARTITION 

KNAPSACK 

TSP 

BIN-PACKING 

 ILP  

Conjecture:  3-SAT is intractable. 
Implication:  all of these problems are intractable. 
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Still More Reductions from 3-SAT 

Aerospace engineering.  Optimal mesh partitioning for finite elements. 
Biology.  Phylogeny reconstruction. 
Chemical engineering.  Heat exchanger network synthesis. 
Chemistry.  Protein folding. 
Civil engineering.  Equilibrium of urban traffic flow. 
Economics.  Computation of arbitrage in financial markets with friction. 
Electrical engineering.  VLSI layout.  
Environmental engineering.  Optimal placement of contaminant sensors. 
Financial engineering.  Minimum risk portfolio of given return. 
Game theory.  Nash equilibrium that maximizes social welfare. 
Mathematics.  Given integer a1, …, an, compute 
Mechanical engineering.  Structure of turbulence in sheared flows. 
Medicine.  Reconstructing 3d shape from biplane angiocardiogram. 
Operations research.  Traveling salesperson problem, integer programming. 
Physics.  Partition function of 3d Ising model. 
Politics.  Shapley-Shubik voting power. 
Pop culture.  Versions of Sudoko, Checkers, Minesweeper, Tetris. 
Statistics.  Optimal experimental design. 

6,000+ scientific papers per year. 
Conjecture:  3-SAT is intractable. 
Implication:  all of these problems are intractable. 
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NP-completeness 
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NP-Completeness 

Q.  Why do we believe 3-SAT is intractable? 

Def. An NP problem is NP-complete if all problems in NP reduce to it. 

Theorem.  [Cook 1971]  3-SAT is NP-complete. 
Corollary.   Poly-time algorithm for 3-SAT  ⇒  P = NP. 

Two worlds. 

every NP problem is a 3-SAT problem in disguise 

P ≠ NP P = NP 

EXP 
P = NP 

NP 

P NPC 
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 3DM  VERTEX COVER 

HAM-CYCLE CLIQUE 

INDEPENDENT SET 

3-COLOR 

PLANAR-3-COLOR EXACT COVER 

HAM-PATH SUBSET-SUM 

PARTITION 

KNAPSACK 

TSP 

BIN-PACKING 

 ILP  

Cook's Theorem 

3-SAT 

All NP problems reduce to 3-SAT. 

Stephen Cook 
'82 Turing award 

FACTOR 
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3-SAT 

 3DM  VERTEX COVER 

HAM-CYCLE CLIQUE 

INDEPENDENT SET 

3-COLOR 

PLANAR-3-COLOR EXACT COVER 

HAM-PATH SUBSET-SUM 

PARTITION 

KNAPSACK 

TSP 

BIN-PACKING 

 ILP  

Cook + Karp 

All Karp problems are different manifestations 
of one "really hard" universal problem. 
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Implications of NP-Completeness 

Implication.  [3-SAT captures difficulty of whole class NP.] 
  Poly-time algorithm for 3-SAT iff P = NP. 
  If no poly-time algorithm for some NP problem, then none for 3-SAT. 

Remark.  Can replace 3-SAT with any of Karp's problems. 

Proving a problem NP-complete guides scientific inquiry. 
  1926:  Ising introduces simple model for phase transitions. 
  1944:  Onsager finds closed form solution to 2D version in tour de force. 
  19xx:  Feynman and other top minds seek 3D solution. 
  2000:  3D-ISING is NP-complete. a holy grail of statistical mechanics 

search for closed formula appears doomed 
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Summary 

P.  Class of search problems solvable in poly-time. 
NP.  Class of all search problems, some of which seem wickedly hard. 
NP-complete.  Hardest problems in NP. 
Intractable.  Problem with no poly-time algorithm. 

Many fundamental problems are NP-complete. 
  TSP, 3-SAT, 3-COLOR, ILP. 
  3D-ISING. 

Use theory a guide: 
  A poly-time algorithm for an NP-complete problem would be a

 stunning breakthrough (a proof that P = NP). 
  You will confront NP-complete problems in your career. 
  Safe to assume that P ≠ NP and that such problems are intractable. 
  Identify these situations and proceed accordingly. 
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Coping With NP-completeness 
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Coping With NP-completeness 

Relax one of desired features. 
  Solve the problem in poly-time. 
  Solve the problem to optimality. 
  Solve arbitrary instances of the problem. 

Complexity theory deals with worst case behavior. 
  Instance(s) you want to solve may be "easy." 
  Chaff solves real-world SAT instances with ~ 10k variable. 

[Matthew Moskewicz '00, Conor Madigan '00,  Sharad Malik] 

PU senior independent work (!) 
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Coping With NP-completeness 

Relax one of desired features. 
  Solve the problem in poly-time. 
  Solve the problem to optimality. 
  Solve arbitrary instances of the problem. 

Develop a heuristic, and hope it produces a good solution. 
  No guarantees on quality of solution. 
  Ex. TSP assignment heuristics. 
  Ex.  Metropolis algorithm, simulating annealing, genetic algorithms. 

Approximation algorithm.  Find solution of provably good quality. 
  Ex.  MAX-3SAT:  provably satisfy 87.5% as many clauses as possible. 

but if you can guarantee to satisfy 87.51% as many clauses 
as possible in poly-time, then P = NP ! 
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Coping With NP-completeness 

Relax one of desired features. 
  Solve the problem in poly-time. 
  Solve the problem to optimality. 
  Solve arbitrary instances of the problem. 

Special cases may be tractable. 
  Ex:  Linear time algorithm for 2-SAT. 
  Ex:  Linear time algorithm for Horn-SAT. 

each clause has at most one un-negated literal 
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Exploiting Intractability:  Cryptography 

Modern cryptography. 
  Ex.  Send your credit card to Amazon. 
  Ex.  Digitally sign an e-document. 
  Enables freedom of privacy, speech, press, political association.  

RSA cryptosystem. 
  To use:  multiply two n-bit integers.  [poly-time] 
  To break:  factor a 2n-bit integer.    [unlikely poly-time] 

23 × 67 1,541 

Multiply = EASY 

Factor = HARD 
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Exploiting Intractability:  Cryptography 

FACTOR.  Given an n-bit integer x, find a nontrivial factor. 

Q.  What is complexity of FACTOR? 
A.  In NP, but not known (or believed) to be in P or NP-complete.  

Q.  Is it safe to assume FACTOR is intractable? 
A.  Maybe, but not as safe as assumption for NP-complete.  

not 1 or x


7403756347956171282804679609742957314259318888923128
9084936232638972765034028266276891996419625117843995
8943305021275853701189680982867331732731089309005525
0511687706329907239638078671008609696253793465056379
6359 

RSA-704 
($30,000 prize if you can factor) 
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Challenge.  Factor this number. 

Can't do it?  Create a company based on the difficulty of factoring. 

Fame and Fortune through CS (revisited) 

RSA algorithm 
RSA sold 

for $2.1 billion 

7403756347956171282804679609742957314259318888923128
9084936232638972765034028266276891996419625117843995
8943305021275853701189680982867331732731089309005525
0511687706329907239638078671008609696253793465056379
6359 

RSA-704 
($30,000 prize if you can factor) 

or design a t-shirt 
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Challenge.  Factor this number. 

Can't do it?  Try resolving P = NP question (need more math and cs). 

7403756347956171282804679609742957314259318888923128
9084936232638972765034028266276891996419625117843995
8943305021275853701189680982867331732731089309005525
0511687706329907239638078671008609696253793465056379
6359 

RSA-704 
($30,000 prize if you can factor) 

Fame and Fortune through CS (revisited) 

$1 million prize 
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A Final Thought 

FACTOR.  Given an n-bit integer x, find a nontrivial factor. 

Q.  What is complexity of FACTOR? 
A.  In NP, but not known (or believed) to be in P or NP-complete. 

Q.  What if P = NP? 
A.  Poly-time algorithm for factoring; modern e-conomy collapses. 

Quantum.  [Shor 1994]  Can factor an n-bit integer in n3 steps 
on a "quantum computer.” 

Q.  Do we still believe the extended Church-Turing thesis??? 

not 1 or x
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CS Building, West Wall 
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Princeton CS Building, West Wall, Circa 2001 

char 

P 

= 

ASCII 

80 

61 

binary 

1010000 

0111101 

N 

P 

78 

80 

1001110 

1010000 

? 63 0111111 

0 
1 

1 
0 

0 

0 

0 


