4.1 Performance

Tetroduction Pa
Copyright $\odot 2008$

The Challenge
Q. Will my program be able to solve a large practical problem?

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage

Charles Babbage (1864)

Scientific Method

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments we design must be reproducible.
- Hypothesis must be falsifiable.

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

Predict performance.

- Will my program finish?
- When will my program finish?

Compare algorithms.

- Will this change make my program faster?
- How can I make my program faster?

Basis for inventing new ways to solve problems.

- Enables new technology.
- Enables new research.

Algorithmic Successes

N-body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^{2} steps.
- Barnes-Hut: $N \log N$ steps, enables new research.

Discrete Fourier transform.

- Break down waveform of N samples into periodic components
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: ${ }^{2}$ steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Three-Sum Problem

Three-sum problem. Given N integers, find triples that sum to 0 . Context. Deeply related to problems in computational geometry.

```
% more 8ints.txt
30-30-20 -10 40 0 10 5
% java ThreeSum < 8ints.txt
4
30-30 0
    30-20-10
-30
-10 0 10
```

Q. How would you write a program to solve the problem?

```
public class ThreeSum {
    // return number of distinct triples (i, j, k)
    // such that (a[i] + a[j] + a[k] == 0)
    public static int count(int[] a) {
        int N = a.length
        int cnt = 0;
        for (int i = 0; i < N; i++)
            for (int j = i+1; j < N; j++)
                for (int k = j+1; k < N; k++)
                if (a[i] + a[j] + a[k] == 0) cnt++;
        return cnt;
    }
    public static void main(String[] args) {
        int[] a = StdArrayIO.readInt1D()
        StdOut.println(count(a));
    }
}
```


Empirical Analysis

Empirical Analysis

Stopwatch

Q. How to time a program? A. A stopwatch.

\% java ThreeSum < 1Kints.txt

0
\% java ThreeSum < 2Kints.txt

tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
$391930676-763182495371251819$ $-326747290802431422-475684132$
Q. How to time a program?
A. A stopwatch object.

public class Stopwatch	
Stopwatch()	create a new stopwatch and start it running
double	elapsedTime()

```
public class Stopwatch {
    private final long start;
    public Stopwatch() {
        start = System.currentTimeMillis()
    }
    public double elapsedTime() {
        return (System.currentTimeMillis() - start) / 1000.0;
    }
}
```


Empirical Analysis

Data analysis. Plot running time vs. input size N.

Q. How fast does running time grow as a function of input size N ?
Q. How to time a program?
A. A stopwatch object.

public class Stopwatch	
Stopwatch()	create a new stopwatch and start it running

public static void main(String[] args) \{
int[] a = StdArrayIO.readInt1D();
Stopwatch timer = new Stopwatch();
StdOut.println(count(a));
StdOut.println(timer.elapsedTime());

Initial hypothesis. Running time obeys power law $f(N)=a N^{b}$.
Data analysis. Plot running time vs. input size N on a log-log scale.

Consequence. Power law yields straight line (slope = b).

$\iota^{\text {slope }}$
Refined hypothesis. Running time grows as cube of input size: a N^{3}.

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.
Run program, doubling the size of the input?

N	time ${ }^{\dagger}$	ratio
512	0.033	-
1024	0.26	7.88
2048	2.16	8.43
4096	17.18	7.96
8192	136.76	7.96

Hypothesis. Running time is about $a N^{b}$ with $b=\lg c$.

Performance Challenge 2

Let $F(N)$ be running time of main() as a function of input N.

```
public static void main(String[] args) {
    int N = Integer.parseInt(args[0]);
}
```


Scenario 2. $\mathrm{F}(2 \mathrm{~N}) / \mathrm{F}(\mathrm{N})$ converges to about 2.

Q. What is order of growth of the running time?

Let $F(N)$ be running time of main() as a function of input N.

```
public static void main(String[] args) {
    int N = Integer.parseInt(args[0]);
```

\}

Scenario 1. $\mathrm{F}(2 \mathrm{~N}) / \mathrm{F}(\mathrm{N})$ converges to about 4.

Q. What is order of growth of the running time?

Prediction and Validation

Hypothesis. Running time is about $a N^{3}$ for input of size N.
Q. How to estimate a ?
A. Run the program!

N	time †
4096	17.18
4096	17.15
4096	17.17

$17.17=a 4096^{3}$
$\Rightarrow a=2.5 \times 10^{-10}$

Refined hypothesis. Running time is about $2.5 \times 10^{-10} \times N^{3}$ seconds.

Prediction. 1,100 seconds for $N=16,384$.

Observation.

Mathematical Analysis

Donald Knuth Turing award '74

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
        for (int i = 0; i < N; i++)
        for (int j = i+1; j < N; j++)
            if (a[i] + a[j] == 0) count++;
```

operation	frequency
variable declaration	$N+2$
variable assignment	$N+2$
less than comparison	$1 / 2(N+1)(N+2)$
equal to comparison	$1 / 2 N(N-1)$
array access	$N(N-1)$
increment	$\leq N^{2}$

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0
for (int i = 0; i < N; i++)
    if (a[i] == 0) count++;
```

operation	frequency
variable declaration	2
variable assignment	2
less than comparison	$N+1$
equal to comparison	N
array access	N
increment	$\leq 2 N$

Tilde Notation

Tilde notation

- Estimate running time as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1.	$6 N^{3}+17 N^{2}+56$	$\sim 6 N^{3}$
Ex2.	$6 N^{3}+100 N^{4 / 3}+56$	$\sim 6 N^{3}$
Ex 3.	$6 N^{3}+\underbrace{17 N^{2} \log N}_{$ discard lower-order terms $\text { (e.g., } N=1000: 6 \text { trillion vs. } 169 \text { million })$$}$	$\sim 6 N^{3}$

[^0]Running time. Count up frequency of execution of each instruction and weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

Analysis: Empirical vs. Mathematical

Empirical analysis.

- Measure running times, plot, and fit curve.
- Easy to perform experiments.
- Model useful for predicting, but not for explaining.

Mathematical analysis.

- Analyze algorithm to estimate \# ops as a function of input size.
- May require advanced mathematics.
- Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.

Power law. Running time of a typical program is $\sim a N^{b}$.
Exponent b depends on: algorithm.
Leading constant a depends on:

- Algorithm.
- Input data.
- Caching.
- Machine.
- Compiler
system dependent effects
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications.

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent b, run experiments to estimate a.

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.
$\lg N=\log _{2} N$
for (int $i=0 ; i<N ; i++)$

```
while (N > 1)
```

while (N > 1)
N = N / 2;
N = N / 2;
}

```
    }
```

N

for (int $i=0 ; i<N ; i++)$

 for (int $j=0 ; j<N ; j++)$$N \lg N$
\}

```
public static void g(int N)
```

public static void g(int N)
if (}\textrm{N}==0\mathrm{) return;
if (}\textrm{N}==0\mathrm{) return;
g(N/2);
g(N/2);
g(N/2)
g(N/2)
for (int i = 0; i<N; i++)
for (int i = 0; i<N; i++)
}

```
}
```

```
public static void f(int N)
```

public static void f(int N)
if (N == O) return.
if (N == O) return.
f(N-1);
f(N-1);
f(N-1);

```
    f(N-1);
```


29

order of growth	predicted running time if problem size is increased by a factor of 100	predicted factor of problem size increase if computer speed is increased by a factor of 10
linear	a few minutes	order of growth
linearithmic	a few minutes	linear

Binomial Coefficients

Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

Pascal's identity. $\quad\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
$\underbrace{\underbrace{}_{\text {excludes }}}_{\begin{array}{c}\text { contains } \\ \text { first }\end{array}}$
first element first element

Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.

Binomial Coefficients: First Attempt

```
public class SlowBinomial {
```

public class SlowBinomial {
// natural recursive implementation
// natural recursive implementation
public static long binomial(long n, long k) {
public static long binomial(long n, long k) {
if (k == 0) return 1;
if (k == 0) return 1;
if (n == 0) return 0;
if (n == 0) return 0;
return binomial(n-1, k-1) + binomial(n-1, k);
return binomial(n-1, k-1) + binomial(n-1, k);
}
}
public static void main(String[] args) {
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
int N = Integer.parseInt(args[0]);
int K = Integer.parseInt(args[1]);
int K = Integer.parseInt(args[1]);
StdOut.println(binomial (N, K));
StdOut.println(binomial (N, K));
}
}
}

```
}
```


Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

$$
\left.\frac{\binom{13}{1} \times\binom{ 48}{3}}{\binom{52}{7}}=\frac{224,848}{133,784,560} \text { (about } 594: 1\right)
$$

Probability of 6-4-2-1 split in bridge:

$=\frac{29,858,811,840}{635,013,559,600}$ (about 21:1)

Performance Challenge 3

Q. Is this an efficient way to compute binomial coefficients?
A. No, no, no! [same essential recomputation flaw as naïve Fibonacci]

Timing experiments: direct recursive solution.

$(2 n, n)$	time †
$(26,13)$	0.46
$(28,14)$	1.27
$(30,15)$	4.30
$(32,16)$	15.69
$(34,17)$	57.40
$(36,18)$	230.42

ncrease n by 1 , running tim increases by about $4 x$
Q. Is running time linear, quadratic, cubic, exponential in n ?

Dynamic Programming

Key idea. Save solutions to subproblems to avoid recomputation.

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

$$
20=10+10
$$

binomial(n, k)

Let $F(N)$ be running time to compute binomial (2N, N)

```
public static long binomial(long n, long k) {
    if (k == 0) return 1
    if (n == 0) return 0
    return binomial (n-1, k-1) + binomial (n-1, k);
}
```

Observation. $\mathrm{F}(\mathrm{N}+1) / \mathrm{F}(\mathrm{N})$ converges to about 4.
Q. What is order of growth of the running time?
A. Exponential: a 4^{N}. \longleftarrow will not finish unless N is small

Binomial Coefficients: Dynamic Programming

```
public class Binomial {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0])
        int K = Integer.parseInt(args[1]);
        long[][] bin = new long[N+1][K+1];
        // base cases
        for (int n = 0; n <= N; n++) bin[N][0] = 1
        // bottom-up dynamic programming
        for (int n = 1; n <= N; n++)
            for (int k = 1; k <= K; k++)
        // print results
        StdOut.println(bin[N][K]);
    }
}
```

 for (int \(\mathbf{k}=1 ; \mathbf{k}<=\mathbf{K}\); \(\mathbf{k + +}\)) bin[0][K] = 0;
 \(\operatorname{bin}[n][k]=\operatorname{bin}[n-1][k-1]+\operatorname{bin}[n-1][k] ;\)
 Tradeoff. Trade (a little) memory for (a huge amount of) time.

Timing experiments for binomial coefficients via dynamic programming.

$(2 n, n)$	time t
$(26,13)$	instant
$(28,14)$	instant
$(30,15)$	instant
$(32,16)$	instant
$(34,17)$	instant
$(36,18)$	instant

Q. Is running time linear, quadratic, cubic, exponential in n ?

Digression: Stirling's Approximation
Alternative: $\quad\binom{n}{k}=\frac{n!}{n!(n-k)!}$
Caveat. 52! overflows a long, even though final result doesn't.

Instead of computing exact values, use Stirling's approximation:

$$
\ln n!\approx n \ln n-n+\frac{\ln (2 \pi n)}{2}+\frac{1}{12 n}-\frac{1}{360 n^{3}}+\frac{1}{1260 n^{5}}
$$

Application. Probability of exact k heads in n flips with a biased coin.

$$
\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { (easy to compute approximate value with Stirling's formula) }
$$

Let $F(N)$ be running time to compute binomial (2N, N) using DP.

```
for (int n = 1; n <= N; n++)
    for (int k = 1; k <= K; k++)
        bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
```

Q. What is order of growth of the running time?
A. Quadratic: a N^{2}. effectively instantaneous for small N

Remark. There is a profound difference between 4^{N} and N^{2}

Memory

Bit. 0 or 1.

Byte. 8 bits.
Megabyte (MB). 1 million bytes ~ 2^{10} bytes.
Gigabyte (GB). 1 billion bytes ~ 2^{20} bytes.

type	bytes		type	bytes
boolean	1		int[]	$4 N+16$
byte	1		double[]	$8 N+16$
char	2		int[][]	$4 N^{2}+20 N+16$
int	4		double[][]	$8 N^{2}+20 N+16$
float	4		String	$2 N+40$
long	8			
double	8			

typical computer '10 has about 2GB memory
Q. What's the biggest double [] array you can store on your computer?
Q. How much memory does this program require as a function of N ?

```
public class RandomWalk {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        int[][] count = new int[N][N]
        int x = N/2;
        int }\mathbf{y}=\textrm{N}/2
        for (int i = 0; i < N; i++) {
            // no new variable declared in loop
            count[x][y]++;
        }
    }
}
```


Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method.
Q. What if it's not fast enough? Not enough memory?

- Understand why.
- Buy a faster computer.
- Learn a better algorithm (COS 226, COS 423).
- Discover a new algorithm.

attribute	better machine	better algorithm
cost	$\$ \$ \$$ or more	\$ or less
applicability	makes "everything" run faster	does not apply to some problems
improvement	quantitative improvements	dramatic qualitative improvements possible

[^0]: Technical definition. $f(N) \sim g(N)$ means $\lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1$

