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1. MODELS WITH EXPONENTIAL FAMILY CONDITIONALS

Consider the distribution p(X) = p(x1, · · · , xN) from which we wish to
sample. In each step of the Gibbs sampling procedure, we replace xi by
a value sampled from the distribution p(xi|x−i), where xi denotes the i-th
component of X, and x−i includes all components in X other than xi. Gibbs
sampling repeats this procedure by cycling through all the variables in some
particular order.

Therefore, Gibbs sampling involves the computation of many conditional
distributions. Whether those conditional distributions are easy to compute
determines the feasibility of a Gibbs sampling approach. In most of the
situations, the conditional distributions take the form of exponential fam-
ily, from which the approach is very easy to sample. Later discussions
will show that exponential family conditions are also helpful in variational
methods.

In many graphical models, every conditional distribution p(xi|x−i) is an
exponential family, which makes the inference on these models very easy.
For example, in the Gaussian mixture model, each conditional distribution
takes the form of the following, respectively.

uncollapsed

{
p(µk|µ−k, z1:N) ∼ Gaussian

p(zn|z−n,µ1:K) ∼ Multinomial
(1)

collapsed : p(zn|z−n) ∼ Multinomial(2)

In general, conditional distributions in the exponential family are defined
to be the set of distributions of the form

p(xi|x−i) = exp
{
g(x−i)T t(xi) − a

(
g(x−i)

)}
(3)

where t(xi) is a function of xi, g(x−i) are called the natural parameters of
this distribution.

Besides the Gaussian mixture model mentioned above, other graphical
models whose conditionals are exponential families include Kalman filters,
Hidden Mixture Models, Mixtures of conjugate priors, etc.
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2. VARIATIONAL METHODS

2.1. Introduction. There are two classes of approximate inference schemes,
stochastic and deterministic approximates. Markov chain Monte Carlo be-
longs to stochastic techniques. Here we introduce variational inference,
which is a deterministic technique.

Variational methods were firstly introduced in statistics physics, and then
applied in machine learning problems. Recently, it has begun to be used in
Bayesian inference. In this chapter, we care about using variational methods
for inference. The key idea behind this is to use optimization to perform a
difficult computation.

2.2. Comparision to Markov Chain Monte Carlo. The difference be-
tween variational methods and sampling (Markov chain monte carlo) are
summarized as in Table 1. Besides what is shown in Table 1, one folk wis-
dom about sampling and variational methods is that variational methods are
faster, but come with fewer theoretical guarantees.

Sampling (MCMC) Variational
Key idea: Key idea:
Approximate the posterior with Posit a family of distributions over
samples that are (hopefully) from it. the latent variables indexed by free

variational parameters.
Then fit these parameters to be
(hopefully) close to the posterior.

Issue: Issue:
What is the proposal distribution? What is the family to use?
Burn-in? Lag? How to optimize?
Computational bottleneck: Computational bottleneck:
Sampling, computing acceptance Optimization
probability, assessing convergence.

TABLE 1. Comparison of variational and sampling methods.

2.3. Variational Methods in Bayesian Models. In this part, we consider
how the variational optimization can be applied to the inference problem.
Suppose we have a Bayesian model in which all parameters are given prior
distributions. The set of all observed random variables are denoted by X =

{x1, · · · , xN}. The model also have a set of latent variables which are denoted
as Z = {z1, · · · , zM}. Note that N and M can be different. The probabilistic
model specifies the joint distribution p(X,Z), and our goal is to find an
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approximation for the posterior distribution p(Z|X). Because

(4) p(Z|X) =
p(X,Z)

p(X)
,

in order to infer p(Z|X) we need to compute the normalizing constant p(X),
which is the marginal probability of the observations.

Using Jensen’s inequality, we have

log(p(X)) = log
∫

p(X,Z)dZ(5)

= log
∫

p(X,Z)
q(Z)
q(Z)

dZ

>
∫

q(Z) log(p(X,Z))dZ −
∫

q(Z) log q(Z)dZ

= Eq
[
log(p(X,Z))

] − Eq
[
log q(Z)

]

≡ l(q,X)

where the bound is tight when q(Z) = p(Z|X).
Then variational methods try to compute log(p(X)) through optimization

by finding q that maximizes l(q, X),

(6) log(p(X)) = max
q∈M

(
Eq

[
log(p(X,Z))

] − Eq
[
log q(Z)

])

whereM is a family of distributions including p(Z|X) that assert no more
conditional independences than those in p(Z|X). For instance, M can be
all joint probability distributions on Z that contains no conditional indepen-
dence.

In general, we cannot do this optimization overM. So, in order to com-
pute l(q,X) and attempt optimization, we need to restrict M to a simpler
familyMtract, which is tractable, so that

(7) log(p(X)) ≥ max
q∈Mtract

(
l(q,X)

)
.

3. MEAN-FIELD VARIATIONAL METHODS

3.1. Introduction. Two fundamental problems with variational methods
are bothM and the conjugate dual function of A, A∗ are hard to character-
ize in explicit form. Mean-field variational methods are one type of varia-
tional methods whereM is restricted to tractable subfamiles of distributions
Mtract in such a way that the distributions are fully factorized. That is, the
distributions inMtract have the form

(8) q(Z) = q(z1|ν1)q(z2|ν2) · · · q(zM |νM)
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where ν1:M are variational parameters and each zi is parameterized by νi as
in Figure 1.

FIGURE 1. A graphical model of the distributions inMtract

Since each zi can be any distribution governed by a variational parame-
ter νi, there are M different distributions and z1, z2, . . . , zM are independent.
This is called a naive mean field approach. For more complicated approach,
we can consider dependences between zi’s by putting some edges between
the nodes in the graphical model. This is called a structured mean field
approach.

We can find the approximating distribution q that maximizes the objective
function l(q,X) over Mtract. Actually, that q is the approximate posterior
distribution. We do not need to go through computations of equation 7 and
equation 4 by incorporating q into them.

3.2. Mean-field and Kullback-Leibler divergence. An alternative inter-
pretation to explain mean-field variational methods is to minimize the dif-
ference between the approximating distribution and the target distribution
using KL divergence (Kullback-Leibler divergence). KL divergence is an
information theoretic measure of the “distance” between two distributions,
defined as for p1(X) and p2(X),

(9) KL(p1(X)||p2(X)) = Ep1

[
log

(
p1(X)
p2(X)

)]
.

Maximizing the objective function l(q,X) with respect to q is equivalent
to finding the q ∈ Mtract that minimizes KL(q(Z)||p(Z|X)). I.e.,
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q∗ = arg max
q∈Mtract

l(q, X)(10)

= arg max
q∈Mtract

(
Eq

[
log(p(X,Z))

] − Eq
[
log q(Z)

])

= arg min
q∈Mtract

(
Eq

[
log q(Z)

] − Eq
[
log(p(Z|X))

])

= arg min
q∈Mtract

KL(q(Z)||p(Z|X)).


