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1. MOTIVATION.

We have discussed latent variable models such as mixturelsydec-
tor analysis and Bayesian exponential families. In thesesathe exact
posterior distribution of interest is easy to compute. Alsaxall that we
already have discussed a general purpose algorithm foempasinference,
theJunction Tree algorithm, which can be effectively applied to those mod-
els.

For more complex models, exact inference is not possibleaus®e the
posterior cannot be computed. For instance, a small charige functional
form of a conjugate prior to a non-conjugate prior, rendees giosterior
computation intractable, even if the structure of the giegdhmodel stays
the same (Figure 1).

2. APPROXIMATE POSTERIOR INFERENCE

Consider the mixture model represented by the graphicabmodrigure
2. This model is a generalized version of the Gaussian neéxtodel. Here
we have introduced the mixture component centers as randoables, and
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FIGURE 1. If the random variables in this model are nor-
mally distributed, we can compute posteriors analytically
However, if the distribution of) is not Gaussian, the poste-
rior is uncomputable.
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FIGURE 2. Mixture model with random cluster centers.

placed a prior on them. The generative process is charaetkliy:

(1) i ~ N(0, \) k=1...K,
2 Zp ~ Mult(r) n=1...N,
3) xn|znnul:K ~ N(:uznv 02)'

In the Bayesian setting, we are interested in estimatingséepor dis-
tribution of the mixture component centeis , instead of a single point
estimate. That is, our interest is the posterior distrdouti

(4) p(M1:K|$1;N).

which is not easy to compute. Let’'s see why. Suppose thatarenpeterr

is fixed andk = 3. In that case, the posterior of interest is
p(p)p(p2)p(pts) TTney P(wnli1:5)

Lo iae P()D(12)p(p13) TIy P ps)

The expression in the numerator can be calculated by

(5) p(M17M27M3‘x1:N) =

(6) xn|,u1 :3 Z Uryg xn|,u2

On the other hand, the expression in the denominator cambétes as

(7) p(z1N) /// p(p)p(pa)p(pes) HZEP%M
H2 v 3

n=1 i=1
which is difficult to compute due to the product of sums in thiegral ar-
gument. Alternatively, we could expand the denominator laygimalizing
the mixture assignment, first:

8) plzin) szlN//W/uS p(u1)p(p2)p M?)H (@nlptz,)

Z1:N
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(9)

pein) = > _plz1n) (/ pi) 1 P(%Ml))

21:N H1 {n,zn=1}

x (/ pp2) 1 p(%lm)) (/ pps) 1 p(%lm))-

{n,z,=2} {n,zn=3}

Even though we can manage to compute each integral in thethasss,
the outter sum ha8”" terms. In general, we would hav€” terms, an
exponential number of terms that makes the computatiomasiliée. This
result suggests that performing exact inference in thisehisaot possible.
But we still have hope: we must find an approximate algoritbroampute
the posterior distribution of interest.
This is an example of a general rule of thunpbactical Bayesian mod-

elsrequire approximate posterior inference.

3. SAMPLING.

In a general sampling setting, we have a target distribytian which
cannot be computed. We will approximate it with a collectodisamples:

1 M
(10) p(z) ~ 37 > 6,0 (x)
=1

wherez¥ are samples from the target distribution.
In the following, we will discuss two methods to obtain suemples:
rejection sampling andimportance sampling.

4. REJECTIONSAMPLING.

Assume we can compute the target distributidn) but cannot sample
from it. However, suppose we can sample from a proposal iflumat )
defined over the same sample space. Additionally; le¢ such that there
exists som&’' for which the following holds:

(12) p(x) < C - q(x)

The rejection sampling algorithm is described in Algorithm
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FIGURE 3. Sampling fromp(z), with a proposal function
q(x). First, we sampler™ from the proposal distribution
q(x). Second, we obtaim from a uniform in the interval
(0,1). Lastly, we accept:™ if « falls in the normalized
“acceptance interval”.

Input: target distributiorp(z), proposal distributior(x)
Output: M samples fronp(z)

1= 1;
repeat
2@ ~ q();
u ~ Unlf(O 1);
p(z)
if u< then
! Cq(z™)
acceptz®;
increment
end
until 2 = M ;

Algorithm 1: Rejection Sampling

Note that a good sampler tends to have a low scaling fd¢tdihe bigger
C'is, the larger the rejection area is.

5. IMPORTANCE SAMPLING.

The Importance sampling algorithm provides a method to agenpam-
ples from an expectation

(12) E[f(2)] = / F(e)plx)dz

Suppose we can computér) and we can sample from a proposal dis-
tribution ¢(x), which has the same support a&:). The expectation in
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Equation 12 can be formulated as:

o p@)
13) Bl @) = [ o2t
(14) ~ 2 S FE ()

%

wherez(® ~ ¢(z) andw(2®) = Z)Eﬁ;; is the sample-specific weight.
The criteria to assess if a proposal distributiois appropiately chosen

can be:

e Itis easy to sample from.
e g is close top.

A nice feature of the importance sampling algorithm is tlzemhples can
be reused with different target distributiops However, the downside is
that it performs poorly when the sample space is high dinoeradi

Finally, note that the two sampling methods described ahssame that
p(z) can be computed. In practice, itis not always possible twutatiep(x)
exactly. Some alternative sampling methods that circut¥e restriction
are provided by the MCMC techniques described in the folhgwi

6. MARKOV CHAIN MONTE CARLO (MCMC).

The MCMC sampling methods scale well with the dimensiogalin
such sampling techniques, we only need to know the targeitdison p(z)
up to a constant:

(15) p(z) = p(x)/Z «— normalization factor

During the MCMC sampling procedure, we are going to draw aisege
of statesc(Y), wherez is a configuration of our set of random variables. The
proposal distributiory depends on the previous stat€, which is denoted
by ¢(z]2")).
The overall sampling procedure is composed by two steps:
e Draw a sample:* from the proposal
e “Accept” according to a possibly random criterion

6.1. Metropolis algorithm. The Metropolis algorithm was introduced in
1953. The procedure assumes a symmetric progdsalzs) = q(z2|x1).
A candidate sample* is drawn fromg, and accepted with probability

16) A (2", 2®) = min (1, ]i(;(;))) — min (1, ;&:)))) .
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Notice that since we only need to compute the r%ﬁ@)}) we can work
directly with p instead. Thus, we do not need to obtain the normalization
constantZ since it will be canceled out.

If the candidate is accepted, we sét?) = 2*, otherwise we set the new
state tar(+) = £,

An important property of the Metropolis algorithm is that lasg as
q(z1|z2) > 0 for all (zy, z,), the empirical distributiop,;(z®) converges
to p(z) ast — oo andM — oc.

MCMC algorithms define a Markov chain oxi whose stationary distri-
bution isp(z).

The general procedure to obtain independent samples)fism

e Run the Markov chain for a long time.
e Collect samples at some time lag.



