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1. DIMENSIONALITY REDUCTION

The goal of dimensionality reduction is to compute a reduced represen-
tation of our data. The benefits of such a reduction include visualization of
data, storage of data, and the possible extraction of systematic structures. In
general, if we have a p-dimensional vector (x1, Zo, ..., x,) we wish to find
a way to represent this vector with g-dimensions as (71, T, . .., Z,) With
p > q. In this lecture we assume only real valued vectors.

2. PRINCIPAL COMPONENT ANALYSIS (PCA)

The main idea of PCA is to project our data to a lower dimensional man-
ifold. For example, if p = 2 and our data “seem” linear (¢ = 1) then we
wish to project the data points onto a “suitable” line (see Figure 1). This
projection is not without cost since our data do not really live on a line. In
PCA our free parameter is the selection of q.

There are at least three ways to think about our lower dimensional sub-
space:

(1) We can maximize the variance of the projection along R? [1]. In
the previous example, a selection of a horizontal line results in the
projected data points being “squashed”.

(2) We can minimize the reconstruction error, i.e. the distance between
the the original data and the projected data [2]. [Note: this is not the
same as regression where we minimize the RSS].

(3) We can view PCA via an MLE of a parameter in a latent variable
model [3].

3. THE MULTIVARIATE GAUSSIAN DISTRIBUTION

The probability density function of a Gaussian random vector X € RP is
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FIGURE 1. Example of dimensionality reduction with p = 2
and g = 1.

with mean ;1 € RP and symmetric positive definite covariance matrix ) €
RP*P. If we let X; denote the i*" element of X and o;; denote the ij™"
element of ). then we have the following relationships:

e = E[X] (mean)
oi; =E[X;X;] -E[X;]E[X,] (covariance)
0 =E[X?] —E[X;] (variance)

Letting f(z) = —% (z — p)" 271 (# — 1) defines contours of equal prob-
ability (see Figure 2). When X' is diagonal the elements of X are uncor-
related implying statistical independence in the case of Gaussian random
vectors.

3.1. MLE of the Multivariate Gaussian. Let X;,..., Xy € R? denote
1id Gaussian random vectors. The MLE is given by

N
i, 2’) =argmax » logp (z,|p, X
@ g(m); gD (talp, )
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FIGURE 2. Some examples of multivariate Gaussian
equiprobable contours in 2 dimensions with p = [1 2|7

and its solution is given by
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3.2. Subvectors of Multivariate Gaussian Random Vectors. For p-dimensional
Gaussian random vector X = (X, Xo, ..., X,) we can write X = <X1, X2>

where X; = (Xy,...,X}) and X; = (X4iq,...,X,). It follows that X;
and X, are jointly normal and for X having mean p and covariance matrix
2/, we partition our parameters as follows:

_ _ Ell 212
po={(p1,p2) and  X= ( o 222>

with N L
p=E [X] . and 5, = E [XiXT } .

J
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Using the chain rule we obtain p (71,72) = p(Z2)p(Z1|Z2). To obtain
the marginal of )~(2, denoted X,,, we marginalize over X 1 and obtain the
Gaussian random vector with mean (., = 2 and covariance matrix X, =
2)99. The conditional variable X 1|)N(2, denoted X, is also Gaussian with
parameters

e = 1+ X125 (To — o)
Y. = Xy — 2122521 2o (Schur complement)
4. PCA AND FACTOR ANALYSIS (FA)

We begin with the latent variable graphical model (see Figure 3): the la-
tent random variable z,, ~ N (0, [,), observed variable x,, ~ N (u + Az,, ¥),
and with parameters /A € RP*? and positive definite diagonal matrix ¥ €
R?*? (I}, is the k x k identity matrix). Without loss of generality, we can
assume . = 0 since we can always center the observed data.
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FIGURE 3. Latent variable graphical model

We can view this as a generative process as also seen by samples at Figure
4: foreachn=1,...,N

(1) Select a random point on the ¢g-manifold with distribution N (0, 1,)
= 2z,

(2) Use A to map this random point to R? — Az,

(3) Select a random point in R? with distribution N (Az,,¥) = x,

The difference between PCA and FA is the structure of ¥:
PCA ¥ =diag(c®1,)
FA U = diag (<a%,a§,... o2 )

1 Op
where 1 is the k-dimensional vector of all ones. The solution to PCA is ex-
act and involves selecting the eigenvectors of [1| x| - - - |@,] X [#1] @] - - - |2n]"
corresponding to the largest p eigenvalues (in magnitude). FA, on the other
hand, does not have an explicit solution and so we rely on the EM algo-
rithm. The graphical model above has a strong resemblance to the regres-
sion model (z,, resemble the covariates and x,, resemble the response). The
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FIGURE 4. A few samples from the generative process
given at Figure 3

steps of the EM algorithm are
E step z|x
Mstep A

where

R N L/ N
AWHD — Z E [zn2] | 7] Z E [zn]|2n]" 20
n=1 n=1

which resembles the normal equations.
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