
COS513: FOUNDATIONS OF PROBABILISTIC MODELS
LECTURE 15

ALEX LORBERT, GUNGOR POLATKAN

1. DIMENSIONALITY REDUCTION

The goal of dimensionality reduction is to compute a reduced represen-
tation of our data. The benefits of such a reduction include visualization of
data, storage of data, and the possible extraction of systematic structures. In
general, if we have a p-dimensional vector (x1, x2, . . . , xp) we wish to find
a way to represent this vector with q-dimensions as (x̃1, x̃2, . . . , x̃q) with
p > q. In this lecture we assume only real valued vectors.

2. PRINCIPAL COMPONENT ANALYSIS (PCA)

The main idea of PCA is to project our data to a lower dimensional man-
ifold. For example, if p = 2 and our data “seem” linear (q = 1) then we
wish to project the data points onto a “suitable” line (see Figure 1). This
projection is not without cost since our data do not really live on a line. In
PCA our free parameter is the selection of q.

There are at least three ways to think about our lower dimensional sub-
space:

(1) We can maximize the variance of the projection along Rq [1]. In
the previous example, a selection of a horizontal line results in the
projected data points being “squashed”.

(2) We can minimize the reconstruction error, i.e. the distance between
the the original data and the projected data [2]. [Note: this is not the
same as regression where we minimize the RSS].

(3) We can view PCA via an MLE of a parameter in a latent variable
model [3].

3. THE MULTIVARIATE GAUSSIAN DISTRIBUTION

The probability density function of a Gaussian random vector X ∈ Rp is

p (x|µ, Σ) =
1

(2π)p/2 |Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}

1
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FIGURE 1. Example of dimensionality reduction with p = 2
and q = 1.

with mean µ ∈ Rp and symmetric positive definite covariance matrix Σ ∈
Rp×p. If we let Xi denote the ith element of X and σij denote the ijth

element of Σ then we have the following relationships:

µi = E [Xi] (mean)
σij = E [XiXj]− E [Xi]E [Xj] (covariance)
σii = E [X2

i ]− E [Xi]
2 (variance)

Letting f(x) = −1
2
(x− µ)T Σ−1 (x− µ) defines contours of equal prob-

ability (see Figure 2). When Σ is diagonal the elements of X are uncor-
related implying statistical independence in the case of Gaussian random
vectors.

3.1. MLE of the Multivariate Gaussian. Let X1, . . . , XN ∈ Rp denote
iid Gaussian random vectors. The MLE is given by

(
µ̂, Σ̂

)
= arg max

(µ,Σ)

N∑
n=1

log p (xn|µ,Σ)
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FIGURE 2. Some examples of multivariate Gaussian
equiprobable contours in 2 dimensions with µ = [1 2]T

and its solution is given by

µ̂ =
1

N

N∑
n=1

xn

Σ̂ =
1

N

N∑
n=1

(xn − µ̂) (xn − µ̂)T

3.2. Subvectors of Multivariate Gaussian Random Vectors. For p-dimensional
Gaussian random vector X = 〈X1, X2, . . . , Xp〉we can write X =

〈
X̃1, X̃2

〉

where X̃1 = 〈X1, . . . , Xk〉 and X̃1 = 〈Xk+1, . . . , Xp〉. It follows that X̃1

and X̃2 are jointly normal and for X having mean µ and covariance matrix
Σ, we partition our parameters as follows:

µ = 〈µ1, µ2〉 and Σ =

(
Σ11 Σ12

Σ21 Σ22

)

with
µi = E

[
X̃i

]
, and Σij = E

[
X̃iX̃

T
j

]
.
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Using the chain rule we obtain p (x̃1, x̃2) = p (x̃2) p (x̃1|x̃2). To obtain
the marginal of X̃2, denoted Xm, we marginalize over X̃1 and obtain the
Gaussian random vector with mean µm = µ2 and covariance matrix Σm =

Σ22. The conditional variable X̃1|X̃2, denoted Xc, is also Gaussian with
parameters

µc = µ1 + Σ12Σ
−1
22 (x̃2 − µ2)

Σc = Σ11 −Σ12Σ
−1
22 Σ21 (Schur complement)

4. PCA AND FACTOR ANALYSIS (FA)

We begin with the latent variable graphical model (see Figure 3): the la-
tent random variable zn ∼ N (0, Iq), observed variable xn ∼ N (µ + Λzn, Ψ),
and with parameters Λ ∈ Rp×q and positive definite diagonal matrix Ψ ∈
Rq×q (Ik is the k × k identity matrix). Without loss of generality, we can
assume µ = 0 since we can always center the observed data.

FIGURE 3. Latent variable graphical model

We can view this as a generative process as also seen by samples at Figure
4: for each n = 1, . . . , N

(1) Select a random point on the q-manifold with distribution N (0, Iq)
=⇒ zn

(2) Use Λ to map this random point to Rp =⇒ Λzn

(3) Select a random point in Rp with distribution N (Λzn, Ψ) =⇒ xn

The difference between PCA and FA is the structure of Ψ :
PCA Ψ = diag (σ21p)
FA Ψ = diag

(〈
σ2

1, σ
2
2, . . . , σ

2
p

〉)

where 1k is the k-dimensional vector of all ones. The solution to PCA is ex-
act and involves selecting the eigenvectors of [x1|x2| · · · |xn]×[x1|x2| · · · |xn]T

corresponding to the largest p eigenvalues (in magnitude). FA, on the other
hand, does not have an explicit solution and so we rely on the EM algo-
rithm. The graphical model above has a strong resemblance to the regres-
sion model (zn resemble the covariates and xn resemble the response). The
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FIGURE 4. A few samples from the generative process
given at Figure 3

steps of the EM algorithm are

E step z|x
M step Λ̂

where

Λ̂(t+1) =

(
N∑

n=1

E
[
znzT

n |x
]
)−1 (

N∑
n=1

E [zn|xn]T xn

)

which resembles the normal equations.
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