
COS513, LECTURE 13

SAM GERSHMAN, RICHARD SOCHER

1. EXPONENTIAL FAMILY DISTRIBUTIONS: MAXIMUM LIKELIHOOD
ESTIMATION

Let X1:N denote our observed data (consisting of N datapoints) that we
assume is drawn from a distribution in the exponential family (EF). Recall
that an EF distribution is parameterized by a natural parameter η, a func-
tion t(X) referred to as the sufficient statistic (SS), a function a(η) referred
to as the log-normalizer, and a function h(X) that enforces the underly-
ing measure with respect to which P (X|η) is a density.1 The likelihood is
defined as

P (X1:N |η) =
N∏

n=1

h(xn) exp
{
ηTt(X1:N)− a(η)

}
(1)

=

[
N∏

n=1

h(xn)

]
exp

{
ηT

N∑
n=1

t(xn)−Na(η)

}
.(2)

A valuable aspect of working with the EF form is that all the information
provided by the data is encapsulated by the SS. This means that it is not
generally necessary to store all the datapoints in memory. For example, the
SS of the Gaussian distribution is t(X) = 〈

∑
n xn,

∑
n x2

n〉. Intuitively, the
SS correspond to the sample mean and variance, respectively. As another
example, the SS of the Bernoulli distribution is t(X) =

∑
n xn. In this case,

the SS can be interpreted intuitively as the number of “heads” in a series of
coin flips.

Returning to the likelihood, we are interested in finding the value of the
natural parameter that maximizes the likelihood function. This is the max-
imum likelihood estimate η̂ML. For numerical stability, it is often advanta-
geous to work with the log-likelihood:

l(η; X1:N) = log P (X1:N |η) =
N∑

n=1

log h(xn) + ηT
N∑

n=1

t(xn)−Na(η).

(3)

1Note that we use uppercase P generically to refer to either a density or a distribution
function
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Taking the gradient of the log-likelihood with respect to the natural param-
eter yields

∇ηl =
N∑

n=1

t(xn)−N∇ηa(η).(4)

Setting the gradient to zero gives:

∇ηA(η̂ML) =
1

N

N∑
n=1

t(xn)(5)

= E [t(X1:N)] .(6)

To state this result in words: at the ML solution, the expectation of the SS
is simply equal to the sample mean of the SS. This result explains how one
fits all EF distributions. For example, fitting a Gaussian entails computing
the sample mean and variance, which is the expected SS. Exploiting the
structure provided by the EF form obviates the need to directly optimize the
likelihood function (e.g., with Lagrange multipliers).

2. BAYESIAN INFERENCE FOR EXPONENTIAL FAMILY DISTRIBUTIONS

In the Bayesian setting, we place a prior distribution P (η) on the natural
parameter and attempt to infer the posterior distribution P (η|X1:N). Sig-
nificant mathematical convenience is obtained when the prior and posterior
have the same functional form. We say that the prior is conjugate to the data
generating distribution.2 We emphasize that conjugacy is useful for math-
ematical convenience, and many reasonable models will be non-conjugate.
As an example, a Gaussian prior is conjugate to a Gaussian likelihood with
fixed variance. Another example is the Beta distribution, which is conjugate
to the Bernoulli distribution. To show this explicitly, we now work through
this example in detail.

2.1. Bayesian inference for the Beta-Bernoulli model. In its mean pa-
rameterization (with mean π), the Bernoulli distribution is written as:

P (x|π) = πx(1− π)1−x,(7)

and the Beta distribution with parameters α and β is written as:

P (π|α, β) =
Γ(α + β)

Γ(α)Γ(β)
πα−1(1− π)β−1,(8)

where Γ is the Gamma function (an extension of the factorial function to
real and complex numbers). The first factor in Eq. 8 acts as a normalizing

2Note that no distribution is universally conjugate; conjugacy is relative to the data
generating distribution.
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FIGURE 1. Probability density function of the Beta distri-
bution with different parameters.

constant. Figure 1 shows the probability density function of several param-
eter values.

Now suppose that the observed data X1:N was generated according to the
following generative model:

π ∼ Beta(α, β)(9)

xn ∼ Bern(π), n = 1 . . . N.(10)

We then have following expression for the posterior:

P (π|X1:N , α, β) ∝ P (π, X1:N |α, β)(11)

= P (π|α, β)
N∏

n=1

P (xn|π)(12)

=
Γ(α + β)

Γ(α)Γ(β)
πα−1(1− π)β−1

N∏
n=1

πxn(1− π)1−xn(13)

∝ πα+
P

n xn−1(1− π)β+
P

n(1−xn)−1.(14)

Thus we see that the posterior distribution is a Beta distribution with param-
eters α′ = α +

∑
n xn and β′ +

∑
n(1 − xn). Intuitively, α and β function

as “fictional” datapoints prior to observing X1:N . With more and more data,
the prior will lose its importance.



4 SAM GERSHMAN, RICHARD SOCHER

The expected value of the mean parameter under a Beta(α, β) distribu-
tion is

E [π] =
α

α + β
.(15)

2.2. Bayesian inference for the general exponential family model. After
having looked at the specific example of the Beta distribution, we can now
derive MLE for an arbitrary distribution in the exponential family. Let us
assume the following abstract generative process

η ∼ Conj(λ)(16)
Xn ∼ Exp− fam(η).(17)

The likelihood of the data and the posterior of the parameters become

p(xn|η) = hη(x) exp{ηT t(xn)− a(η)}(18)

p(η|λ) = hλ(η) exp{λT
1 η + λ2(−ax(η))− ac(λ)},(19)

where 〈λ1, λ2〉 are the natural parameters with dimension dim(η) + 1. The
sufficient statistics are 〈η,−ax(η)〉 and ac(λ) is the log normalizer of the
conjugate prior. We can now find a close form solution for the posterior

p(η|x1:N , λ)(20)

∝ p(η|λ)
∏
n

p(xn|η)(21)

∝ h(η) exp{λT
1 η + λ2(−ax(η))− ac(λ)}(22)

· exp{ηT
∑

n

t(xn)−Nax(η)}(23)

∝ h(η) exp{(λ1 +
∑

n

t(xn))T η + (λ2 + N)(−ax(η))}(24)

Because the prior is conjugate with respect to the likelihood function, the
posterior is in the same functional family as the prior with the parameters
λ̂1 = λ1 +

∑
n t(xn) and λ̂2 = λ2 + N .

3. LATENT VARIABLE MODELS (CHAPTER 10)

In a graphical model, latent variables are random variables which are
not observed. They are very useful in settings where we assume that our
data are generated by a hidden cause. Furthermore, they provide structure
to the underlying distribution of observations. We will first investigate the
simplest such model, a mixture of Gaussians.
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FIGURE 2. (Left) Graphical model representation of the
Gaussian mixture model. (Right) Synthetic data generated
from a manually set common covariance matrix and fixed
means.

3.1. Gaussian mixture model. Fig 2 (left) shows the graphical model.
The mixture components are Gaussian distributions. π are the mixing pro-
portions and µ are the means of the mixture components. The assumed
underlying generating process is simply

For n = 1..N

zn ∼ Mult(π)(25)
xn ∼ N (µzn , Σzn),(26)

where we assume that the covariance matrices Σ are given. Fig. 2 (right)
shows data generated from a mixture of Gaussians.


