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1. BIAS-VARIANCE TRADE-OFF (CONTINUED FROM LAST LECTURE)

If V = {(Xn, Yn)} are observed data, the linear regression problem can
be modeled as:

(1) Yn|Xn, β ∼ N(βXn, σ
2)

βXn is therefore true response mean, around which we expect the ob-
served responseYn to vary according to the Gaussian noise term. Consider
a new inputX for which we estimateβ with the estimator̂β, which we
now view as a random variable, dependent onV. The MSE (Mean Squared
Error) of the estimator̂β over the distributionD of all inputsX for which
β is the true estimated parameter is:

MSE(β̂) = ED[(β̂X − βX)2]

=
[

E[(β̂X)2] − (E[β̂X])2
]

+
[

(E[β̂X] − βX)2
]

(2)

Eq. 2 is the sum of two terms that represent:

(1) E[(β̂X)2] − (E[β̂X])2: the variance of the estimator̂β, i.e. how
sensitive the estimator is to randomness in the data.

(2) (E[β̂X] − βX)2: the squared bias of the estimator, i.e. how closely
β̂ approximates the true value of the parameterβ.

An unbiased estimator is one for which the squared bias term is 0. In Figure
1, we view the distribution of̂βX overD as a Normal distribution param-
eterized by the two MSE terms. For an unbiased estimator, thedistribution
is centered at the true valueβX.

The Maximum Likelihood Estimate (MLE), or Least Squares estimate, is
an unbiased estimate. TheGauss-Markov Theorem states that among all
unbiased estimates, MLE has the smallest variance. Therefore, if we wish
to have an unbiased estimator, the best estimate we can choose is MLE. Our
intuition should be that we should always choose an unbiasedestimator. In-
deed, classical statistics dealt only with unbiased estimators. However, note
that the fact that an estimator is unbiased says nothing about the variance of
the estimator. Thus, for a given datasetV, the errorβ̂X − βX may in fact
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FIGURE 1. Distribution of unbiased estimator

be very large. Therefore, an estimator with slight bias but small variance
will be preferable to an unbiased estimator with a very largevariance. The
remainder of this lecture will discuss how modern statistics allows for this
tradeoff between bias and variance.

1.1. Regularization. In regression, this trade-off is made throughregular-
ization, which:

• Involves placing a constraint on̂β.
• Encourages “smaller” and “simpler” models because the space of

values ofβ̂ considered is smaller.
• Intuitively, preventsoverfittingto the training data, leading to better

generalization.
• Aids model interpretation by producing “simpler” models (although

attempting to interpretβ weights should often be avoided).

2. RIDGE REGRESSION

The most popular form of regularized regression isRidge Regression,
which places a constraint on the sum of squares of theβ weights. Formally,
Ridge optimizes the Residual Sum of Squares (RSS) subject toa constraint
on

∑p
i=1

β2

i :

(3) min
N

∑

n=1

(yn − βT xn)2 s.t.
p

∑

i=1

β2

i < s

We visualize the Ridge optimization in Figure 2. Assumexn is a two-
dimensional vector, i.e.p = 2. First, consider the RSS term in Eq. 3. The
MLE estimateβ̂ will lie at a point in the two-dimensional coefficient space.
The RSS at this point is

∑N
n=1

(yn − β̂T xn)2 . Likewise, all other points̃β
in the coefficient space have an RSS of

∑N
n=1

(yn − β̃T xn)2 . In fact, for
all β̃ other thanβ̂, there will be an infinite set of points with the same RSS
asβ̃, and these points will lie on an ellipse. We can thus plot the contours
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FIGURE 2. Illustration of the Ridge regression optimiza-
tion whenp = 2. The concentric ellipses are contours ofβ
with equal RSS. Spheres constrains the search space forβ.
Ridge solves for the value ofβ with minimal RSS among all
β values lying withins.

of RSS values emanating from̂β as nested ellipses. Since these contours
correspond to increasing RSS values, they also correspond to increasing
biasesof their associated estimates.

Now consider the constraint term in Eq. 3.
∑p

i=1
β2

i is a measure of the
Euclidean distance from the origin toβ, and the constraint< s dictates the
radius of the circle in whichβ is constrained to lie. Thus, when we solve
Eq. 3, we are seeking the valueβ̃ within the sphere of radiuss with minimal
RSS, i.e. the point in spheres that lies on the contour ellipse closest toβ̂.
This point will be a unique point at which the edge ofs touches a contour
ellipse, i.e. the point on spheres closest toβ̂. Because we have limited
the range ofβ values being considered, thevarianceof our estimate will
necessarily be smaller than when considering the full rangeof β values. If
β̂ lies within s, the Ridge estimate is equivalent to the MLE. In all other
cases, however, the resulting estimate will have higher bias than the MLE
but smaller variance, which is precisely the effect we are seeking. Ass is
increased, the estimate bias will decrease but the variancewill increase, and
vice versa.
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We can solve for the estimatêβridge directly with the following con-
strained optimization, whereλ represents a complexity parameter, some-
times called the Ridge, orL2 Penalty:

(4) β̂ridge = arg min
β

N
∑

n=1

1

2
(yn − βT xn)2 + λ

p
∑

i=1

β2

i

The1/2 is added for mathematical convenience when minimizing Eq. 4.
There are two nice things about Eq. 4:

• For a fixed value ofλ, this equation is convex and therefore easy to
minimize, which is the major reason why Ridge is the most popular
regularization technique for regression.

• There is essentially a one-to-one mapping betweenλ ands, such
that whenλ increases,s effectively decreases. (Note: technically
this mapping depends on the the number of data pointsN , such
that asN increases,s effectively increases to accomodate the larger
dataset. This subtlety is important when considering Bayesian lin-
ear regression.)

3. CHOOSING λ VIA CROSS-VALIDATION

Despite these niceties, by introducingλ, we have added an additional pa-
rameter to be optimized. So how do we solve for the optimalλ? A first
inclination might be to simply use MLE, just like we do withβ. Unfortu-
nately, since MLE seeks to minimize the RSS, the optimal value for λ will
always be0, rendering useless our attempts at regularization. Intuitively, by
regularizing, we are hoping to improve thegeneralizationof our model to
other datasetsV. Thus, a natural way to optimizeλ is to train models with
different values ofλ and evaluate the error of these models on a different
dataset we believe to be drawn from the same distribution as the dataset used
for training our model (generalization error). This procedure is commonly
used in model-fitting and is calledcross-validation. The cross-validation
procedure is as follows:

(1) Choose candidate values forλ.
(2) Divide the data(Xn, Yn) into K folds.
(3) For each foldk and candidateλ:

• Estimateβ̂ridge
k,λ on out-of-fold samples, i.e.

xn ∈ j = {1...K}, j 6= k.
• Compute generalization error on in-fold samples:

εn,λ = (yn − β̂ridge
k,λ xn)2 for n in fold k.

At this point, we have evaluated the errorε for every data point
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FIGURE 3. Bayesian view of regression, withλ as a prior on
β. MAP estimation under this model is equivalent to Ridge
Regression.

n in the data, where our estimate was computed based on data
not includingn.

• Finally, selectλ = arg minλ
1

N

∑N
n=1

εn,λ.

Note that cross-validation, while helping solve for one parameter, intro-
duces another parameter in its place:K. In Elements of Statistical Learn-
ing, Hastie et al. conclude, after a discussion about the sensitivity of cross-
validation to the choice ofK, that one should simply choose the value
K = 5 folds. A student also raises a cautionary note about cross-validation:
avoidxn being too systematically similar to the data points in otherfolds,
or the effects of overfitting to the training data may go unnoticed. Shuffling
the examples to remove systematic biases is often warranted.

4. BAYESIAN L INEAR REGRESSION

Bayesian Linear Regression is closely related to Ridge, as illustrated in
Figure 3.

As in our previous probabilistic view of linear regression:

(5) yn|xn, β ∼ N(βT xn, σ2)

However, note that we have now placed a prior on the coefficients, the
(fixed) parameterλ:

(6) βi ∼ N(0, 1/2λ)

Consider the MAP (maximum a posteriori) estimation ofβ under this model:

(7) β̂MAP = arg max
β

{

log P (β|x1:N , y1:N , λ)
}

Noting that because we are only considering the max, normalization con-
stants don’t matter, and we obtain, via the re-ordered chainrule:

β̂ = arg max
β

{

log(P (y1:N |x1:N , β)

p
∏

i=1

P (βi|λ))
}

= arg max
β

{

log P (y1:N |x1:N , β) +

p
∑

i=1

log P (βi|λ)
}

(8)
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Recall that, given Eq. 5:

P (y1:N |x1:N , β) =
1

(2πσ2)N/2
exp

{

−
1

2σ2

N
∑

n=1

(yn − βTxn)2

}

=
1

(2πσ2)N/2
exp

{

−
1

2σ2
RSS(β)

}

(9)

Again, noting that normalization constants do not matter, we have that:

(10) arg max
β

{

log P (y1:N |x1:N , β)
}

= arg max
β

{

-RSS(β)
}

Given Eq. 6:

(11) P (βi|λ) =
1

√

2π/λ
exp

{

−
β2

i λ

2

}

Thus, given Equations 10 and 11 and again ignoring constants, we have:

(12) β̂MAP = arg max
β

{

− RSS(β) − λ

p
∑

i=1

β2

i

}

where the variance ofβ is λ/2. Note that Eq. 12 takes the same form
as Ridge regression. Therefore, MAP under the Bayesian model with a
prior onβ of λ is equivalent to performing Ridge regression with penalty
parameterλ.

Note that asλ increases, the more the MAP estimate diverges from the
MLE, and vice versa. In effect, the RSS(β) term corresponds to the influ-
ence of the data on the model, while theλ

∑p
i=1

β2

i term corresponds to the
influence of the prior, i.e. making the variance of the estimate smaller is, in
effect, indicating an increasing certainty thatβ = 0. As with all Bayesian
models, as the influence of the prior increases, the influenceof the data
decreases.λ controls this data versus prior tradeoff. As previously noted,
unlike λ, s grows with the size of the data. Given enough data, the influ-
ence of the data will eventually overwhelm the influence of the prior, and
the spheres will grow so large as to encompasŝβ, making the MAP esti-
mate equivalent to MLE. Note that we outlined a procedure forestimating
λ via cross-validation, but a true Bayesian would of course never fit λ in
such a way, because doing so involves using the data twice.
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FIGURE 4. Illustration of the LASSO optimization when
p = 2. The concentric ellipses are contours ofβ with equal
RSS. Polygons constrains the search space forβ. LASSO
solves for the value ofβ with minimal RSS among allβ
values lying withins, which will lie on a “corner” ofs.

5. LASSO

Consider the following alternative regularization, whichestimatesβ by
minimizing RSS subject to anL1 norm constraint

∑p
i=1

|βi|:

(13) min

N
∑

n=1

(yn − βTxn)2 s.t.
p

∑

i=1

|βi| < s

This form of regularization is known as theLASSO (Least Absolute Shrink-
age and Selection Operator):

(14) β̂ lasso= arg min
β

{ N
∑

n=1

1

2
(yn − βTxn)2 + λ

p
∑

i=1

|βi|

}

In Figure 4, we visualize the LASSO optimization just as we did the Ridge
optimization.

As with Ridge, the optimalβ will lie on the periphery ofs at the point
closest toβ̂. Although difficult to visualize in 2 dimensions, in higher di-
mensionality, the RSS contours will touch a (multi-dimensional) “corner”
of s first (unlike with Ridge), implying that at least one coefficient is0. The
only exception is when the contours touch at a 45 degree angle, implying
colinearity in the features. Therefore, LASSO zeros out some coefficients
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(particularly in higher dimensions) and finds asparsesolution. Note that
Eq. 14 is still convex, since any penalty norm>= 1 is convex.

Why would we want a sparse solution?
• In many regression applications, it is known that only a subset of

the features/variables will be relevant.
• A naı̈ve approach to finding this relevant subset is to try training

models with all possible subsets, which is of course intractable.
• By setting some coefficients to0, LASSO is in effect performing a

form of feature selection, by choosing which inputs make a differ-
ence in solving the problem.

• Therefore LASSO is performing subset selection yet is convex and
thus easy to optimize.

• In some cases, it can be shown that LASSO is “sparsistent,” inthat
it will find the true relevant subset.

• Narrowing the subset of variables makes interpreting the coeffi-
cients easier.

• Sparse solutions are best if the number of variables is much greater
than the number of data points,P � N .

5.1. Bayesian Interpretation. From our discussion of the correspondence
between MAP estimation in Bayesian linear regression and Ridge, it was
shown that the Ridge penalty is equivalent to assuming a Gaussian prior on
β, i.e. βi ∼ N . LASSO has a similar Bayesian interpretation: the LASSO
(L1) penalty is equivalent to assuming a Laplace distribution of β values,
i.e. p(βi) ∝ exp{λ|βi|} .

Note: Park and Casella discuss a Bayesian approach to solving the LASSO:
Park and Casella (2008). The Bayesian LASSO. JASA 103(482).

6. LARS

LARS (Least Angle Regression) is an efficient algorithm for solving the
LASSO. It computes the entire regularization path, or optimal solution for
each possible number of features, in one pass, allowing the optimal size of
the diamond to be easily determined using cross-validation, which is not
very expensive. This one-pass regularization path discovery is what makes
the LARS + LASSO combination very popular.

Efron, B., Johnstone, I., Hastie, T. and Tibshirani, R. (2003). Least angle
regression. Annals of Statistics.


