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1. WAYS OF ORGANIZING MODELS

In probabilistic modeling, there are several ways of organizing models:

(1) Bayesian vs. Frequentist.
(2) Discriminative vs. Generative.

(a) Discriminative: conditioned on some information, e.g.regression
models, classification models.

(b) Generative: we fit a probability distribution to every part of the
data, e.g. clustering, naive Bayesian classification.

Is discriminative better or generative better? A common myth is
that one of these is always the appropriate solution.

(3) Per-data point prediction vs. Data set density estimation.
(4) Supervised vs. Unsupervised models.

(a) Supervised: given {(xi, yi)}Ni=1 in training, predict y given x in
testing (e.g. classification).

(b) Unsupervised: given data, we seek to find structure in it. Clus-
tering is an example.

All of these models involve

(1) treating observations as random variables in a probability distribu-
tion; and

(2) computing something about the distribution.

2. LINEAR REGRESSION

In this section, we will talk about the basic idea of linear regression and
then study how to fit a linear regression.

2.1. Overview of linear regression. Linear regression is a method to pre-
dict a real valued response y from covariates x using linear models. See
Figure 1 shows an example. Usually, we have multiple covariates x =<
x1, x2, . . . , xp >, where p is the number of covariates.

1



2 SEAN GERRISH AND CHONG WANG

FIGURE 1. Linear regression. ’+’s are data points and the
dashed line is the output of fitting the linear regression.

In linear regression, we fit a linear function of covariates

f(x) = β0 +

p∑
i=1

βixi = β0 + βTx.(1)

Note that βTx = 0 is a hyperplane.
Many candidate features can be used as the input x:
(1) any raw numeric data;
(2) any transformation, e.g. x2 = log x1 and x3 =

√
x1;

(3) basis expansions, e.g. x2 = x2
1 and x3 = x3

1;
(4) indicator functions of qualitative inputs, e.g. 1[the subject has brown hair];

and
(5) interactions between other covariates, e.g. x3 = x1x2.

2.2. Fitting a linear regression. Suppose we have a datasetD = {(xn, yn)}Nn=1.
In the simplest form of a linear regression, we assume β0 = 0 and p = 1.
So the function to be fitted is just

(2) f(x) = βx.

To fit a linear regression in this simplified setting, we minimize the sum
of the distances between fitted values and the truth. Thus, the objective
function is (if we use Euclidean distance)

RSS(β) =
1

2

N∑
n=1

(yn − βxn)2,(3)

where RSS stands for Residual Sum of Squares. Figure 2 illustrates this. To
minimize RSS(β), we take its derivative,

d RSS(β)

d β
= −

N∑
n=1

(yn − βxn)xn.(4)
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FIGURE 2. Linear regression. ‘+’s are data points and the
dashed line is the output of fitting the linear regression.

Since RSS(β) is convex, setting Equation 4 to zero and solving for β̂ leads
to an algebraic version of the optimal solution,

β̂ =

∑N
n=1 ynxn∑N
n=1 x

2
n

.(5)

When we have a new input xnew, then, the prediction is simply ŷnew =

β̂xnew. We can generalize Equation 2 by allowing for a constant offset in
the predictions:

y = β0 +

p∑
i=1

βixi.

Note that solving for β using the setup above does not determine the fixed
offset β0. We can get around this by setting βp+1 = β0 and xp+1 = 1. Then
we have,

y = βTx.

As noted above, the RSS gives a sense of how accurate our estimate is. In
many situations (such as our current one), we are interested in minimizing
the RSS. One approach to find the minimum is to perform gradient ascent.
Equation 4 gives the gradient of interest,

(6) ∇β RSS(β) = −
N∑
n=1

(yn − βTxn)xn,

of our objective function. With a convex objective function such as this
RSS, the gradient is generally sufficient; we could stick this into a black
box gradient descent algorithm and have a solution relatively efficiently. In
this case, as noted in Equation 5, there fortunately also exists an explicit
solution.
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2.3. Concise form of the exact solution. We can more concisely describe
the exact solution with a bit of linear algebra. The design matrixX contains
a set of n observations in p dimensions. Using the constant-offset trick
above, we also append 1 to each row of X:

(7) X =


x1,1 . . . x1,p 1
x2,1 . . . x2,p 1

...
...

...
...

xn,1 . . . xn,p 1


The response vector y describes the corresponding set of labels for these
observations:

(8) Y =

 y1
...
yn


Combining Equations (6), (7), and (8) above, we can write the gradient

of β concisely as

∇β RSS(β) = −XT (Y −Xβ).

Setting this to 0 and solving for β, we have

−XT (Y −Xβ̂) = 0(9)

=⇒ XTXβ̂ = XTY(10)

=⇒ β̂ = (XTX)−1Y .(11)

We observe a couple of things about the equations above. First, Equations 9-
11 are sometimes referred to as the normal equations. In addition, note that
the matrix XTX is invertible as long as X has rank p + 1, which requires
that our covariates not be linearly dependent.

3. PROBABILISTIC INTERPRETATION

We can also frame linear regression using the probabilistic tools we have
developed so far.

When fitting the model, we have access to the observations (xn, yn), and
we seek to determine β. When we are predicting, our goal is to determine
yn, given xn and β:

yn ∼ N (βTxn, σ
2),

or, equivalently,
(1) Draw ε ∼ N (0, σ2)

(2) Set yn = βTxn + ε.
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(a) Fitting (b) Predicting

FIGURE 3. In modeling linear regression with graphical models,
(a). we first fit the parameter β, then (b). predict values yn given a
set of covariates xn.

Note that we can interpret this as a discriminative model, because we
always condition on xn. Because of this, we don’t need to specify the dis-
tribution of xn in the model. Figure 3 illustrates this process.

Given this model, then, our goal is to find the conditional MLE of β̂. The
likelihood of β given our training data x and y is

l(β|x1:N , y1:N) =
N∏
n=1

1√
2πσ2

exp

(
−(yn − βTxn)2

2σ2

)
.

Taking the logarithm and maximizing the log likelihood, we get

βMLE := argmax
β

(
−1

2

N∑
n=1

(yn − βTxn)2

σ2

)
= argmin

β

(
1

2

N∑
n=1

(yn − βTxn)2

)
,

which is exactly the objective function we found our earlier treatment of the
problem.

4. PREDICTION FROM EXPECTATION

4.1. The Bias-Variance Tradeoff. In many statistical applications, it is
useful to understand how close our empirical distribution’s mean β̂ is to the
true mean β of some underlying distribution. Such questions are central
to countless applications of statistics, motivating metrics such as standard
error used frequently in nearly every branch of science.

To formalize this a bit more, consider a dataset with N i.i.d. observa-
tions {(xi, yi)}Ni=1 drawn randomly from some true distribution D. The
empirical MLE estimate β̂MLE, which we can compute from these observa-
tions, is then a random variable, with its randomness arising from the fact
that the observations are themselves drawn from D. Given an unseen da-
tum (xnew, ynew) ∼ D, we seek to find how close E[ynew|xnew, β̂MLE] is to
E[ynew|xnew, β] = βx.

The mean squared error (MSE) is one measure of how close our estima-
tor β̂MLE is to the truth. We can decompose the MSE into both a variance
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term and a bias term:

MSE = ED[(β̂X − βX)2]

= ED[(β̂X)2]− 2ED[β̂X]βX + (βX)2

= ED[(β̂X)2]− 2ED[β̂X]βX + (βX)2 +
(
ED[β̂X]2 − ED[β̂X]2

)
= ED[(β̂X)2]− ED[β̂X]2(12)

+(ED[β̂X]− βX)2,(13)

where Equation 12 is the variance of our estimator β̂ and Equation 13 is
its squared bias. When this bias is zero, the estimator is called an unbiased
estimator; least squares is an example of such an estimator.

For many years, statisticians cared only about unbiased estimators. Re-
cently, however, biased estimators have become more popular because it is
sometimes possible to significantly decrease variance at the expense of a lit-
tle bit of bias. This will be the topic of our next section. Figure 4 illustrates
this.

D
e

n
s
it
y

True mean
Unbiased estimator variance
Biased estimator variance
Bias

FIGURE 4. When attempting to determine the true parameter β
of a distribution, we can use biased and unbiased estimators. Many
estimators, such as standard least-squares, lead to unbiased esti-
mates of the response means (blue). At other times, we may wish
to use biased estimators, which may decrease variance of the esti-
mate of the response mean at the expense of bias (red). (Here we
have abused terminology and blurred the distinction between bias
and squared bias.)


