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1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY
DISTRIBUTIONS.

A graphical model (GM) represents a family of probability distributions
over its variables. The model has

• Variables that can be:
– Observed – represented by shaded nodes
– Hidden – Represented by unshaded nodes. Typical examples

of models having unobserved variables are some clustering and
classification models.

• Parameters. The parameters specify a particular member of the fam-
ily of distributions defined by the graphical model. The parameters
can be:

– Potential functions
– Tables of conditional distributions

Given a model and parameters, we have spent the last few lectures dis-
cussing how to infer marginal and conditional probabilites of random vari-
ables taking on particular values. However, what about the reverse ques-
tion? When building the model, how do we infer the parameters from data?
The goal of this lecture is to provide an overview of statistical concepts that
can provide us with the tools to answer this type of question.

2. BAYESIAN VERSUS FREQUENTIST STATISTICS.

Two main schools of statistics with a history of rivalry are the Bayesian
and the Frequentist schools.

2.1. Bayesian Statistics. For a Bayesian statistician every question is for-
mulated in terms of a joint probability distribution. For example, if we have
selected a model and need to infer its parameters (that is select a particular
member from the family of distributions specified by the model structure)
we can easily express p(~x|θ), the probability of observing the data ~x given
the parameters, θ. However, we would like to know about p(θ|~x), the prob-
ability of the parameters given the data. Applying Bayes rule we express
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p(θ|~x) in terms of p(~x|θ) and the marginal distributions (Note that the nu-
merator is a joint distribution).

(1) p(θ|~x) =
p(~x|θ)p(θ)

p(~x)
.

The expression implies that θ is a random variable and requires us specify
its marginal probability p(θ), which is known as the prior. As a result we
can compute the conditional probability of the parameter set given the data
p(θ|~x) (known as the posterior). Thus, Bayesian inference results not in a
single best estimate (as is the case with the maximum likelihood estimator,
see the next section) but in a conditional probability distribution of the pa-
rameters given the data.

The requirement to set a prior in Bayesian statistics is one of the most fre-
quent criticisms from the Frequentist school since computing the posterior
is subject to bias coming from the initial belief (the prior) that is formed
(at least in some cases) without evidence. One approach to avoid setting
arbitrary parameters is to estimate p(θ) from data not used in the parameter
estimation. We delve deeper into this problem later.

2.2. Frequentist Statistics. Frequentists do not want to be restricted to
probabilistic descriptions and try to avoid the use of priors. Instead they
seek to develop an ”objective” statistical theory, in which two statisticians
using the same methodology must draw the same conclusions from the data,
regardless of their initial beliefs. In frequentist statistics, θ is considered a
fixed property, and thus not given a probability distribution. To invert the
relationship between parameters and data, frequentists often use estimators
of θ and various criteria of how good the estimator is. Two common criteria
are the bias and the variance of an estimator. The variance quantifies devia-
tions from the expected estimate. The bias quantifies the difference between
the true value of θ and the expected estimate of θ based on an infinite (very
large) amount of data. The lower the variance and the bias of an estimator
the better estimates of θ it is going to make.
A commonly used estimator is the maximum likelihood estimator (MLE).
The MLE aims to identify the parameter set θ̂ML for which the probability
of observing the data is maximized. This is accomplished by maximizing
the likelihood p(~x|θ) with respect to the parameters. Equivalently, we can
maximize the logarithm of the likelihood (called the log likelihood). This
gives the same optimization result, since log(x) is a monotonic function.

(2) θ̂ML = arg max
θ

p(~x|θ) = arg max
θ

log p(~x|θ).
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For linear models in which the errors are not correlated, have expectation
zero, and have the same variance, the best unbiased estimator is the maxi-
mum likelihood estimator (MLE), see the Gauss Markov Theorem. How-
ever, in some cases it may be desirable to trade increased bias in the esti-
mator for significant reduction in its variance. This will be discussed later
in the context of regularized regression. One way to reduce the variance of
the estimate of θ is to use the maximum a posteriori (MAP) estimator. The
θ̂MAP is exactly the mode of the posterior distribution. To compute θ̂MAP

we maximize the posterior:

(3) θ̂MAP = arg max
θ

p(θ|~x) = arg max
θ

p(~x|θ)p(θ)

p(~x)
.

However, since p(x) is independent of θ we can simplify this to:

(4) θ̂MAP = arg max
θ

p(~x|θ)p(θ).

Equivalently, we can maximize the logarithm of a posterior:

(5) θ̂MAP = arg max
θ

[log p(~x|θ) + log p(θ)].

In the equation above, the prior serves as a “penalty term”. One can view
the MAP estimate as a maximization of penalized likelihood.

When calculating the θ̂MAP we need to know the prior. However, the
prior also has parameters (called hyperparameters). We could treat these
as random variables and endow them with distributions that have more
hyperparameters. This is the concept of hierarchical Bayesian modeling.
However, we must stop at some point to avoid infinite regress. At this point
we have to estimate the hyperparameters. One common approach is to use
the MLE to estimate these:

(6) α̂ML = arg max
α

log p(~θ|α),

where α is a parameter of the prior (a hyperparameter).
The advantage of using a hierarchical model is that the hyperparameters
that have to be set (at the top level) have less of an influence on the poste-
rior than θ does. The higher the hierarchy, the smaller the influence (mean-
ing less subjectivity). However, this benefit has diminishing returns as the
number of levels increases, so 2-3 levels is usually sufficient. Increasing the
hierarchy also increases the computational complexity of estimation.

The last estimator we mention is the Bayes estimate, which is the mean
of the posterior.

(7) θ̂Bayes =

∫
θp(θ|x) dθ.
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3. DENSITY ESTIMATION

Let us see how these two schools of thought tackle the major statistical
problem of density estimation. Consider a random variable X . The goal
of density estimation is to induce a probability density function (or prob-
ability mass function in the case of discrete variables) for X , based on a
set of observations: {X1, X2, ...XN}. X1, ...XN are random variables all
characterized by the same distribution (identically distributed).

For our examples below, let us assume that X is a univariate random
variable with a Gaussian distribution.

(8) p(x|θ) =
1

(2πσ2)
1
2

exp

{
− 1

2σ2
(x − µ)2

}
.

A univariate gaussian’s parameters are its mean µ and its variance σ2, so
θ = {µ, σ2}. Therefore our goal is to be able to characterize θ based on our
set of observations.

3.1. The Frequentist Approach to Density Estimation. We first present
the IID sampling model, a frequentist approach to density estimation.In ad-
dition to assuming that the observations are identically distributed, the IID
sampling model also assumes that the observations are independent (IID
stands for independent and identically distributed). We can represent this
as a graphical model, as shown in Figure 1. Note that θ is not a random
variable in this case (as indicated by the dot in the node). It is easy to see
that the variable nodes are independent.

FIGURE 1. The IID Sampling Model
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Since we are assuming each Xi to be independent:

p(x1:N |θ) =
N∏

n=1

p(xn|θ)(9)

=
N∏

n=1

1

(2πσ2)
1
2

exp

{
1

2σ2
(xn − µ)2

}
(10)

=
1

(2πσ2)
N
2

exp

{
1

2σ2

N∑
n=1

(xn − µ)2

}
.(11)

To estimate the parameters we maximize the log likelihood with respect
to θ:

l(θ; x1:N) = log p(x1:N |θ)(12)

= −N

2
log(2πσ2) − 1

2σ2

N∑
n=1

(xn − µ)2.(13)

∂l(θ; x1:N)

∂µ
=

1

σ2

N∑
n=1

(xn − µ).(14)

To maximize, we set the derivative to 0 and solve:

1

σ2

N∑
n=1

(xn − µ̂ML) = 0.(15)

N∑
n=1

xn − Nµ̂ML = 0.(16)

(17) µ̂ML =
1

N

N∑
n=1

xn.
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Now we do the same for variance:

∂l(θ; x1:N)

∂σ2
=

∂

∂σ2
(−N

2
log(2πσ2) − 1

2σ2

N∑
n=1

(xn − µ)2)(18)

= − N

2σ2
+

1

2σ4

N∑
n=1

(xn − µ)2.(19)

0 = − N

2σ̂2
ML

+
1

2σ̂4
ML

N∑
n=1

(xn − µ̂ML)2.(20)

σ̂2
ML =

N∑
n=1

(xn − µ̂ML)2.(21)

Thus we see that the maximum likelihood estimates of the mean and
variance are simply the sample mean and sample variance respectively. (We
are setting both partial derivatives to 0 and solving simultaneously. This
explains the presence of µ̂ML when finding σ̂2

ML.)

3.2. The Bayesian Approach to Density Estimation. The Bayesian ap-
proach to density estimation is to form a posterior density p(θ|x). Consider
a simpler version of the problem where the the variance σ2 is a known pa-
rameter, and but the mean µ is unknown and thus a random variable. Thus,
we seek to obtain p(θ|x) based on the the Gaussian likelihood p(x|µ) and
the prior density p(µ).

Now the decision to make is what is the prior density of µ? For computa-
tional ease we take p(µ) to be a Gaussian distribution (since it will give us a
Gaussian posterior). To be consistent with the Bayesian approach, we must
consider the parameters of this prior distribution (the hyperparameters). We
could treat these as random variables as well and add another level of hierar-
chy. However, in this example, we choose to stop and let the fixed constants
µ0 and τ 2 be the mean and variance of the prior distribution respectively.
The situation is modeled in Figure 2. Here we see that µ is now a random
variable, and that the observations are conditionally independent given µ.
However, they are not marginally independent.
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FIGURE 2. The Bayesian Model for Density Estimation

Thus the Bayesian model is making a weaker assumption than the fre-
quentist model, which assumes marginal independence. We elaborate on
this when we discuss De Finetti’s Theorem and exchangability.

We can now calculate the prior density to be:

(22) p(µ) =
1

2πτ 2
exp

{
− 1

2τ 2
(µ − µ0)

2

}
,

and we obtain the joint probability:
(23)

p(x1:N , µ) = p(x1:N |µ)p(µ) =
1

(2πσ2)
N
2

exp

{
1

2σ2

N∑
n=1

(xn − µ)2

}
1

2πτ 2
exp

{
− 1

2τ 2
(µ − µ0)

2

}
.

Normalizing the joint probability (dividing by p(x1:N)), yields the poste-
rior:

(24) p(µ|x1:N) =
1

2πσ̃2
exp

{
− 1

2σ̃2
(µ − µ̃)2

}
.

(25) µ̃ =
N/σ2

N/σ2 + 1/r2
x̄ +

1/r2

N/σ2 + 1/r2
µ0,

where x̄ is the sample mean.

(26) σ̃2 =

(
N

σ2
+

1

τ 2

)−1

.

Please see the Appendix for a derivation. Note for small N , the hyperpa-
rameters µ0 and τ 2 have a significant influence on µ̃ and σ̃2. However, as N
gets larger this influence diminishes and µ̃ approaches the sample mean and
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σ̃2 approaches the sample variance. Thus, as N gets larger the Bayesian es-
timate approaches the maximum likelihood estimate. Ths intuitively makes
sense since as we see more data points, we rely on the prior less and less.

4. DE FINETTI’S THEOREM

We had briefly mentioned that by assuming only conditional indepen-
dence, the Bayesian model was making a weaker assumption than the IID
sampling model. We now make this more precise. In fact the assumption of
conditional independence is equal to that of exchangability. Exchangability
essentially means that the order of our observations does not matter.

More formally, X1, X2, ...XN are exchangable if for any permutation π,
X1, X2, ...XN and Xπ(1), Xπ(2), ...Xπ(N) have the same probability distri-

bution.
De Finetti’s theorem states that:
If X1, X2, ...XN are exchangeable, then

(27) p(x1, x2, ....xN) =

∫
(

N∏
n=1

p(xn|θ)p(θ) dθ,

and thus establishes that exchangability implies conditional independence.
This is a major advantage of Bayesian techniques, since exchangability

is a very reasonable assumption for many applications, while marginal in-
dependence is often not.

5. PLATES

Sometimes when describing graphical models, it is convenient to have
a notation to indicate repeated structures. We use plates (or rectangular
boxes) to enclose a repeated structure. We interpret this by copying the
structure inside the plate N times, when N is indicated in the lower right
corner of the plate. On the next page are the plate diagrams for both the IID
sampling and Bayesian density estimation models.
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FIGURE 3. Plate notation for the IID sampling model

FIGURE 4. Plate notation for Bayesian density estimation

6. DENSITY ESTIMATION OF DISCRETE DATA

We next describe the problem of density estimation for discrete random
variables where the goal is to estimate the probability mass function (instead
of the density function).
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6.1. The Frequentist Approach. First we describe the frequentist approach.
As before we assume that the data is IID. We allow the observations (ran-
dom variables) X1, X2...XN to take on M values. To represent this range of
values, we find it convenient to use a vector representation. Let the range of
Xn be the set of binary M-component vectors with exactly one component
equal to 1 and the other components equal to 0. For example, if Xn could
take on three possible values, we have

(28) Xn ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]}

We use superscripts to refer to the components of these vectors, so Xk
n

refers to the kth component of Xn. Note that since only of the components
is equal to 1, we have

∑
k Xk

n = 1.
With this representation we write the probability mass function of Xn

in the general form of a multinomial distribution with parameter vector
θ = (θ1, θ2, .....θN). The multinomial distribution is basically just a gen-
eralization of the binomial distribution to M outcomes (instead of just 2).
Note that

∑
i θi = 1.

(29) p(xn|θ) = θ
x1

n
1 θ

x2
n

2 · · · θxM
n

M .

Now to find p(x1:N |θ) we take the product over the individual multino-
mial probabilities, (since the observations are assumed to be independent).

p(x1:N |θ) =
N∏

n=1

θ
x1

n
1 θ

x2
n

2 · · · θxM
n

M .(30)

= θ
PN

n=1 x1
n

1 θ
PN

n=1 x2
n

2 · · · θ
PN

n=1 xM
n

M .(31)

Just like in the case of the Gaussian, we estimate the parameters by max-
imizing the log-likelihood.

(32) l(θ; x1:N) =
N∑

n=1

M∑
k=1

xk
n log θk.

To maximize the equation above with respect to θ, we use Lagrange mul-
tipliers.

(33) l̃(θ; x1:N) =
N∑

n=1

M∑
k=1

xk
n log θk + λ(1 −

M∑
k=1

θk).
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We take partial derivatives with respect to θk.

(34)
∂l̃(θ; x1:N)

∂θk

=

∑N
n=1 xk

n

θk

− λ.

To maximize we set the derivatives equal to 0:

λ =

∑N
n=1 xk

n

θ̂ML,k

(35)

λθ̂ML,k =
N∑

n=1

xk
n(36)

λ
M∑

k=1

θ̂ML,k =
M∑

k=1

N∑
n=1

xk
n(37)

λ =
M∑

k=1

N∑
n=1

xk
n(38)

λ =
N∑

n=1

M∑
k=1

xk
n(39)

λ = N.(40)

This yields:

(41) θ̂ML,k =
1

N

N∑
n=1

xk
n.

Just like in the case of the Gaussian, this is basically a sample propor-
tion since

∑N
n=1 xk

n is a count of the number of times that the kth value is
observed.

6.2. Bayesian estimation of discrete data. As in the Gaussian example,
we must specify a prior distribution for the parameters before we can calcu-
late the posterior. In the Gaussian setting, we chose the prior to be Gaussian
so the posterior would be Gaussian. Here we seek the same property. In
general, a family of distributions that when chosen as a prior gives a poste-
rior in the same family (with respect to a particular likelihood), is called a
conjugate prior. In this case, the conjugate prior of the multinomial distri-
bution is the Dirichlet distribution:

(42) p(θ) = C(α)θα1−1
1 θα2−1

2 ....θαM−1
M .
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where
∑

i θi = 1 and where α = (α1, α2, ...., αM) are the hyperparame-
ters (θ′is are the variables). C(α) is a normalizing constant:

(43) C(α) =
Γ (

∑M
i=1 αi)∏M

i=1 Γ (αi)
,

where Γ (·) is the gamma function. We then calculate the posterior:

p(θ|x1:N) ∝ θ
PN

n=1 x1
n

1 θ
PN

n=1 x2
n

2 · · · θ
PN

n=1 xM
n

M θα1−1
1 θα2−1

2 · · · θαM−1
M(44)

= θ
PN

n=1 x1
n+α1−1

1 θ
PN

n=1 x2
n+α2−1

2 · · · θ
PN

n=1 xM
n +αM−1

M .(45)

This is a Dirichlet density with parameters
∑N

n=1 xk
n + αk. Note that it is

easy to to find the normalization factor, since we can just substitute into
Equation 43.

7. APPENDIX

In this section we derive Equation 24. Recall that:
(46)

p(x1:N , µ) = p(x1:N |µ)p(µ) =
1

(2πσ2)
N
2

exp

{
1

2σ2

N∑
n=1

(xn − µ)2

}
1

2πτ 2
exp

{
− 1

2τ 2
(µ − µ0)

2

}
,

and we seek to normalize this joint probability to obtain the posterior.
Let us focus on the terms involving µ, treating the other terms as ”con-

stants” and dropping them as we go. We have:

p(x1:N , µ) ∝ exp

{
− 1

2σ2

N∑
n=1

(x2
n − 2xnµ + µ2) − 1

2τ 2
(µ2 − 2µµ0 + µ2)

}

= exp

{
−1

2

N∑
n=1

[
1

σ2
(x2

n − 2xnµ + µ2) +
1

τ 2

(
µ2

N
− 2µµ0

N
+

µ2

N

)]}

= exp

{
−1

2

N∑
n=1

[(
1

σ2
+

1

Nτ 2

)
µ2 − 2

(xn

σ2
+

µ0

Nτ 2

)
µ + C

]}

∝ exp

{
−1

2

[(
N

σ2
+

1

τ 2

)
µ2 − 2

(
Nx̄

σ2
+

µ0

τ 2

)
µ + C

]}
∝ exp

{
−1

2

(
N

σ2
+

1

τ 2

) [
µ2 − 2

(
N

σ2
+

1

τ 2

)−1 (
Nx̄

σ2
+

µ0

τ 2

)
µ

]}

= exp

{
− 1

2σ2
[µ2 − 2µ̃µ]

}
,
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where

(47) σ̃2 =

(
N

σ2
+

1

τ 2

)−1

,

and

(48) µ̃ =
N/σ2

N/σ2 + 1/r2
x̄ +

1/r2

N/σ2 + 1/r2
µ0.

x̄ is the sample mean.
This proves that the posterior has a Gaussian distribution with mean µ̃

and variance σ̃2.


