
COS513:FOUNDATIONS OF PROBABILISTIC MODELS
LECTURE 4

JELENA BRADIC, MIHAI CUCURINGU

1. SUM-PRODUCT ALGORITHM

Why do we care?
(i) Tress are important because many well known graphical models can

be represented as trees
(ii) This is the basis for the junction tree algorithm

(iii) It is also the basis of an approximate inference algorithm

2. TREES.

Undirected tree is a graph where there is only one path between any two
nodes. Directed tree is a graph whose moralization is an undirected tree.

Examples:
The graph on the figure 3 represent an example of a graph whose moral-

ization doesn’t have the property of undirected trees (i.e. one path between
every two nodes) so it is not a directed tree.

Undirected tree: Under the undirected tree model the joint distribution
has the following representation i.e. parametrization:

(1) p(x) =
1

Z

∏
v∈V

Ψ(xv)
∏

(i,j)∈E

Ψ(xi, xj)

FIGURE 1. Undirected Tree

1



2 JELENA BRADIC, MIHAI CUCURINGU

FIGURE 2. Directed Tree

FIGURE 3. Not a Directed Tree

where Ψ(xv) are defined as singleton potentials and Ψ(xi, xj) are defined as
pairwise potentials and where Z is a normalizing constant set to make the
whole expression on the right hand side of equation (2) sum to 1.

Directed tree: Under the directed tree model the joint now takes the fol-
lowing form:

(2) p(x) = p(xr)
∏

(i,j)∈E

p(xj|xi).

Note that one can parameterize a directed tree as un undirected tree, using
the substitutions below, with the restriction that the potentials Ψ are positive:

(i) Ψ(xr) = p(xr)
(ii) Ψ(xi) = 1, i 6= r

(iii) Ψ(xi, xj) = p(xj|xi)



COS513:FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 4 3

Expressing the joint probability for a directed tree in the undirected form
of (2) makes Z = 1. From now on we will restrict ourselves to the case of
undirected trees.

Also, note that we do not make any special distinction between the un-
conditional and conditional case, because the two parametrizations can be
made formally identicalby by using “evidence potentials“ (the δ-functions
δ(xi, x̄i) used to capture conditioning)

3. ELIMINATE.

Recall the Elimination Algorithm:
(i) Pick an ordering such that the query is last

(ii) Put probabilities(potentials) on the active list together with the delta
δ functions for evidence

(iii) (∀i):
(a) Eliminate each node by taking products of potentials on active

list using xi

(b) Sum out xi to form mi(Si)
(c) Put mi(Si) back to the active list

Note that the evidence does not require any change in the setup and that
we have:

ΨE(xi) =

{
Ψ(xi)δ(xi, x̄i), if i ∈ E
Ψ(xi), o.w. .

This shows that we needed to use singleton potentials separately from the
pairwise one.

On an undirected tree, chose the following ordering, with f denoting the
query node and E the set of evidence nodes:

• treat f as the root (change the view)
• ”direct” all the edges away from f
• set an order such that each node is being ated after its children

Note that for any querry, this gives an efficient inference algorithm, the
reconstitued graphs of this tree are the same, with the complexity given by
the size of the largest clique (i.e. 2)

Example: As an example, consider the following graph on Figure 4.
Building a reconstituted graph is an iterative process, at each step a node
is eliminated and its parents get connected. If we start from the root of the
tree, in this example the tree stays unchanged and hence it is easy to work
with.

Note that the size of the maximal clique in this particular example is 2.
This leads us to having O(k2) is every marginal can take k discrete possible
values.



4 JELENA BRADIC, MIHAI CUCURINGU

FIGURE 4. Reconstituion of a tree is the same tree

FIGURE 5. Reconstituion of a tree is the same tree

..... .....

f

Xi

Xj

4. ELIMINATION STEP

Consider i and j such that i is closer to the root than j is like in the
Figure 5. The factor created when xi is eliminated will be a product of the
following functions:

(i) Ψ(xj)



COS513:FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 4 5

(i) Ψ(xi, xj) , as it contains xi as one of its arguments
(i) No function containing xk-descendent of xj can appear because it

has been eliminated before xj by the ordering
(i) No function containing a node xl which is not in the subtree of xj ,

since there is no edge between xl and any descendant of xj .
Hence, once xj is summed out, the intermediate factor is only a function

of xi. Denote this factor by

mji(xi) message from j → i.

Then

(*) mji(xi) =
∑
xj

Ψ(xj)Ψ(xi, xj)
∏

k∈N(j)\i

mkj(xj)

where N(j) denotes the neighbors of j. At the top of the tree we will have:

(**) p(xf |x̄E) ∝ Ψ(xf )
∏

k∈N(f)\i

mkf (xf )

since the root has no parents and thus all pairwise potentials disappear.
The eliminate algorithm on trees now becomes equivalent to solving a

system of equations:

eliminate algorithm on trees = {(*), (**)}

Hence we can guess right away that the solution of this system of equations
will be based on some dynamic programming techniques.

4.1. Example: Lets consider the following structural graph as presented in
Figure6.

Suppose we want to calculate the marginal p(x1). Then elimination order
becomes 4− 3− 2− 1 so we get to compute m42(x2), m32(x2), m21(x1):

m42(x2) =
∑
x4

Ψ(x4)Ψ(x2, x4)

m32(x2) =
∑
x3

Ψ(x4)Ψ(x2, x3)

m21(x1) =
∑
x2

m32(x2)m42(x2)Ψ(x2)Ψ(x1, x2)

p(x1|xE) ∝ Ψ(x1)m21(x1)

What about computing the marginal p(x2)? We use the same graph but
we change the root node: Figure7. If the elimination is 3 − 4 − 1 − 2, we
need to compute the following messages:



6 JELENA BRADIC, MIHAI CUCURINGU

FIGURE 6. p(x1)

X4X3

X1

m42(x2)m32(x2)

m21(x1)

X2

FIGURE 7. p(x2)

X4

X3 X1

X2

m32(x2)

m42(x2)

m12(x2)

m42(x2) =
∑
x4

Ψ(x4)Ψ(x2, x4)

m32(x2) =
∑
x3

Ψ(x4)Ψ(x2, x3)

m12(x2) =
∑
x1

Ψ(x1)Ψ(x2, x1)



COS513:FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 4 7

FIGURE 8. p(x4)

X4

X3 X1

X2

m32(x2)

m24(x4)

m12(x2)

Notice that m42(x2) and m32(x2) are exactly the same messages we used
when computing p(x1)! When computing the marginal p(x4) (see Figure 8.
for the shape of the tree), again we need to redo some of the computations
from above.

The key insight begind the SUM-PRODUCT algorithm is that messages
can be ”reused”. At the cost of computing all such possible messages in the
tree, we almost get for free all marginals (that we would otherwise get by
considering a different elimination order for each marginal).

5. SUM-PRODUCT ALGORITHM

Sum-product algorithm is based on (*), (**) and the following proto-
col:
Message Passing Protocol: A node can send a message to a neighbor
only and only when it has received messages from all its other neighbors.

Note that such a protocal can be implemented either using a parallel al-
gorithm or following a sequential implementation (in which messages are
computed according to a “schedule”).

Remark: To test whether a graph is a tree (i.e. it is connected and acyclic),
simply go through each nod (using BFS or DFS) and check if each node is
visited exactly once.



8 JELENA BRADIC, MIHAI CUCURINGU

FIGURE 9. Message passing protocol


