COS513 LECTURE 2
CONDITIONAL INDEPENDENCE AND FACTORIZATION

HAIPENG ZHENG, JIEQI YU

Let {X;, X5,---, X, } be a set of random variables. Now we have a
series of questions about them:

e What are the conditional probabilities (answered by normalization /
marginalization)?

e What are the independencies (answered by factorization of the joint
distribution)?

For now, we assume that all random variables are discrete. Then the joint
distribution is a table:

(0.1) p(T1, o, -+, Ty).

Therefore, Graphic Model (GM) is a economic representation of joint dis-
tribution taking advantage of the local relationships between the random
variables.

1. DIRECTED GRAPHICAL MODELS (DGM)

A directed GM is a Directed Acyclic Graph (DAG) G(V, &), where

e ), the set of vertices, represents the random variables;
o £, the edges, denotes the “parent of”’ relationships.

We also define
(1.1) 1I; = set of parents of X;.

For example, in the graph shown in Figure 1.1, The random variables are

X4

X3 Xs

FIGURE 1.1. Example of Graphical Model
1
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{X1, X5+, Xg}, and

(1.2) Il = { Xy, X3}

This DAG represents the following joint distribution:

(1.3)  plere) = pler)p(wa|z1)p(esler)p(aalve)p(es|es)p(re| o2, v5).

In general,

n

(1.4) plrrn) = [ [ p(wilas,)

i=1

specifies a particular joint distribution. Note here 7; stands for the set of
indices of the parents of i.

For those who are familiar with the term Bayesian Network, it is worth
pointing out that DGM is basically a Bayesian Network. Why cycles is not
allowed for DGM? We will address the reason for this “acyclic” require-
ment in the later lectures.

The GM is essentially a family of distributions, it is a family of those who
respect the factorization implied by the graph.

If we assume that X4 are all binary random variables, then the naive
representation (the complete table of the joint distribution) has 2° entries in
the table. Yet if we notice that the representation for p(z3|x) has only
4 entries, then the GM representation for the joint distribution has only
Z?:1 2lmil+1 — 94 entries. Thus, we replace an exponential growth in n,
the total number of nodes, to an exponential growth in |7;| ,the number of
parents. Therefore, GM representation provides eminent saving in space.

1.1. Conditional Independence. First we define independence and condi-
tional independence:

e Independence:
Xa Ll Xp <= p@a,zp) =p(za)p(zs)
e Conditional Independence:

Xa L Xp|Xe <= plxa,xzplre) = p(ralz.)p(rs|ec)
< p(walrp, vc) = p(wa|2C)

Independence is akin to factorization, hence akin to examination of the
structure of the graph.
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1.2. Basic Independencies. The Chain Rule of the probability is:

n

(1.5) p(%;n) = HP($¢|$1;¢—1)'

i=1
For example,

(1.6) p(16) = p(w1)p(@2|21)p(T3]21, 72) - - - P(W6] 21, - -+, 75).

This is suggestive to independencies. Conditional independencies are imbed-
ded in the graph. By comparing equations (1.3) and (1.6), it suggests

(1.7) p(xslzr, - -+ 25) = p(we| w2, 25),

which is equivalent to

(1.8) Xo L X1, X3, Xy | Xo, Xs.

By strict computation, we can show that this is indeed true. (See Appendix
A.l)

Let I be a topological ordering, this is equivalent to m; appears before
1, Vi. Let v; be the set of indices appearing before ¢ in I. Then we have a
series of conditional independencies, given a topological ordering:

(1.9) (X, L X, |X.}.

And these conditional independencies are called basic independencies. For
the GM in Figure 1.1, a possible topological ordering is

(110) I = {X17X27X37X47X57X6}7
then,

X, L 00,

Xy AL @]Xl,

X; 1L Xo|Xy,

Xy L {Xy, X5} Xy,

X5 1 {X47 X27 Xl}|Xd

Basic independencies are attached to topological ordering. However,
they are not all the conditional independencies implied by the graph.
By simple computation (See Appendix A.2), we can confirm that

(1.11) p(za|z1, T2, 23) = p(T4]22).
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X Y Z
FIGURE 2.1

2. BAYES BALL ALGORITHM

2.1. Three Simple Graphs.

(1) A little sequence
As shown in Figure 2.1, X can be deemed as the “past”, Y the
“present” and Z the “future”. Based on the graph, we have the joint

distribution
2.1) p(z,y,z) = p(@)p(ylr)p(z]y).
By simple derivation, we know that
(2.2) X 1L Zz|y.
This is illustrated in Figure 2.2. Note that shading denotes condi-
tioning.
X Y Z
FIGURE 2.2

Here we have the following observations:

(a) This is the only conditional independency implied by this graph.

(b) It suggests that graph separation can be related to the condi-
tional probabilities.

(c) The interpretation of the graph is “the past is independent of
the future given the present”, which is the famous Markov As-

sumption. The above GM is a simplified version of Markov
Chain.

Remark: The “only” conditional independency does not mean that
other independencies cannot hold. For some settings, other inde-
pendencies may hold, but they do not hold for all joint distributions
represented by the GM. So, the arrow in the graph between = and
y does not mean that y has to depend on z. For some settings of
p(y|z), we may have X L Z, but this independency does not hold
for all of the settings.
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(2) A little tree

X Z
FIGURE 2.3

The joint distribution implied by the GM shown in Figure 2.3 is

(2.3) p(z,y, 2) = p(y)p(zly)p(=ly).
Notice that
x,Y, 2 x z
04 plo.sly) = p(z,y,2) _ py)p(zly)p(zly)
p(y) p(y)
so we have X I 7Y, as illustrated in Figure 2.4.

= p(z|y)p(2ly),

Y

FIGURE 2.4

Again, we have the following observations:

(a) This is the only conditional independency implied by this graph.

(b) It suggests that graph separation can be related to the condi-
tional probabilities.

(c) An interesting interpretation of this conditional independence
is like this: Obviously, the “shoe size” (represented by X') and
the “amount of gray hair” (represented by Z) of a person is
highly dependent, because a boy, with no gray hair, wears small
shoes, while an old man, with many gray hairs, wears large
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shoes. However, when the “age” (represented by Y) is given,
the correlation between “shoe size” and “amount of gray hair”
suddenly disappears, since “age” provides all the information
that “shoe size” can provide to infer “amount of gray hair”.
The same is true for “amount of gray hair”. Thus, given “age”,
“shoe size” and “amount of gray hair” are independent. This
GM provides us with the intuition for hidden cause.

(3) Inverse Tree

Z

FIGURE 2.5

Z

FIGURE 2.6

For the graph shown in Figure 2.5, we observe:

(a) X LY is the only implied independency.

(b) Graph separation is opposed in this case.

(c) Tt is not necessarily true that X 1 Y'|Z, as illustrated in Figure
2.6 . This looks a little less intuitive than the previous cases,
yet we have a wonderful example: let’s define

e /: late for lunch
e X: lost my watch
e Y: aliens abduction
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Here, given Z, X and Y “explain away” each other. They de-
creased each other’s possibility if Z is given, hence they are
not conditionally independent. To put it more specifically, say,
if we know that David is late for lunch, then the two seemingly
independent events, “late for lunch” and “lost the watch” sud-
denly explains each other away. If David comes to lunch and
tells us that he lost his watch, then the probability of aliens ab-
duction is very slim; but if we cannot find David and his watch,
then the probability of aliens abduction increases.

2.2. Bayes Ball Algorithm. Description: Bayes Ball Algorithm is a no-
tion of separability that let us determine the validity of an independency
statement in a GM.

Bayes Ball Algorithm is not for actual implementation, but we use it quite
often in our minds.

Is there any way to get all the conditional independencies? The only way
is to try all configurations on the GM, then run Bayes Ball Algorithm to
verify the independencies.

X4
X
Xs
X1
X3 Xs
FIGURE 2.7

The basic idea of Bayes Ball Algorithm is like this, say, we want to verify
the independency of X; 1 Xg| X5, X3, as illustrated in Figure 2.7. Then
we start a ball at X and try to bounce it to X4. According to the three rules
as shown in Figure 2.8, 2.9 and 2.10. If the ball can bounce from X; to Xg,
then the conditional independency is not true. Otherwise, the conditional
independency is verified.
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@&&

FIGURE 2.8. Rule 1 for Bayes Ball Algorithm. A ball can
bounce between X and Z if Y is not given. However, when
Y is given, it blocks the way between X and Z and the ball
can no longer bounce in between.

X Y Z X Y Z
—

FIGURE 2.9. Rule 2 for Bayes Ball Algorithm. A ball can
bounce between X and Z if Y is not given. However, when
Y is given, it blocks the way between X and Z and the ball
can no longer bounce in between.

X Y X Y
DA \t/
Z Z

FIGURE 2.10. Rule 3 for Bayes Ball Algorithm. A ball
cannot bounce between X and Y if Z is not given. How-
ever, when Z is given, it connects X and Y and the ball can
bounce in between.

3. CONCLUSION
The punch line of this lecture (H-C Theorem):
Consider two families:

(1) Family of joint distributions found by ranging over all conditional
probability tables associated with G (via factorization);



COS513 LECTURE 2 CONDITIONAL INDEPENDENCE AND FACTORIZATION 9

(2) All joint distributions that respect all conditional independence state-
ments implied by G and d-separation (via Bayes Ball Algorithm).

Theorem. (H-C Theorem)
Family 1 and 2 are the same.

We will try to prove this theorem in the next lecture.

APPENDIX A. PROOF IN THIS LECTURE

A.1. Proof of 1.8. We only need to show that p(xg|z1.5) = p(xg|ze, T5).
p($1:6)
p($1:5)

p(x1)p(@2|z1)p(@s|:)p(rwe)p(as|vs)p(zs|ze, T5)
Zxﬁ p(z1)p(@2|z1)p(2s|1)p(zv2)p(as|vs)p(zs| 22, T5)

p(z1)p(@2|z1)p(@s|v1)p(rze)p(as|zs)p(ws|Ta, T5)
p(x1)p(w2]21)p(23]|21)p(24|T2)p(25|3) Z% p(x6|r2, 75)

p(l’6|$2, 175)
Zzﬁ p(ze|22, 5)

= p(l‘6|$2, $5)'

A.2. Proof of 1.11. Here is the derivation:
p(x4, L1, T2, 1‘3)

p(1, w2, T3)

st Zxa p(71:6)
Zu Za:5 Z%P(ﬁm)

st Zm p(x1)p(@2|21)p(ws|z1)p(za|za)p(25|23)p (26|22, 5)
Zu Z% Z% p(x1)p(@2|21)p(ws|z1)p(a|ze)p(2s|23)p(6 |22, 5)

p(walwe) 3, p(ws]T3) 3o, p(we|w2, T5)
Eu p(w4|z2) fo, p(ws|z3) Z% p(we| T2, T5)

p(x4|x2)
Zup(mxz)

= p(x4|x2).

pzslz1s) =

P(M’xbﬂ?z,x?)) =




