
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 14, 2009 11:18:32 PM

Geometric Search

References:

 Algorithms in C (2nd edition), Chapters 26-27

 http://www.cs.princeton.edu/algs4/73range

 http://www.cs.princeton.edu/algs4/74intersection

! range search

! space partitioning trees

! intersection search

! cluster search

Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ...

This lecture. Intersection among N objects.

Example problems.

• 1D range search.

• 2D range search.

• Find all intersections among h-v line segments.

• Find all intersections among h-v rectangles.

2

Overview

! range search

! space partitioning trees

! intersection search

! cluster search

3 4

1D range search

Extension of ordered symbol table.

• Insert key-value pair.

• Search for key k.

• Rank: how many keys less than k?

• Range count: how many keys between k1 and k2?

• Range search: find all keys between k1 and k2.

Application. Database queries.

Geometric interpretation.

• Keys are point on a line.

• How many points in a given interval?

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I

5

1D range search: implementations

Ordered array. Slow insert, binary search for lo and hi to find range.

Hash table. No reasonable algorithm (key order lost in hash).

BST. All operations fast.

N = # keys

R = # keys that match

data structure insert rank range count range search

ordered array N log N log N R + log N

hash table 1 N N N

BST log N log N log N R + log N

6

1D range search: BST implementation

Range search. Find all keys between lo and hi?

• Recursively find all keys in left subtree (if any could fall in range).

• Check key in current node.

• Recursively find all keys in right subtree (if any could fall in range).

Worst-case running time. R + log N (assuming BST is balanced).

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST

7

2D orthogonal range search

Extension of ordered symbol-table to 2D keys.

• Insert a 2D key.

• Search for a 2D key.

• Range count: how many keys lie in a 2D range?

• Range search: find all keys that lie in a 2D range?

Applications. Networking, circuit design, databases.

Geometric interpretation.

• Keys are point in the plane.

• How many points in a given h-v rectangle.

rectangle is axis-aligned

8

2D orthogonal range search: grid implementation

Grid implementation. [Sedgewick 3.18]

• Divide space into M-by-M grid of squares.

• Create list of points contained in each square.

• Use 2D array to directly index relevant square.

• Insert: add (x, y) to list for corresponding square.

• Range search: examine only those squares that intersect 2D range query.

LB

RT

9

2D orthogonal range search: grid implementation costs

Space-time tradeoff.

• Space: M2 + N.

• Time: 1 + N / M2 per square examined, on average.

Choose grid square size to tune performance.

• Too small: wastes space.

• Too large: too many points per square.

• Rule of thumb: !N-by-!N grid.

Running time. [if points are evenly distributed]

• Initialize: O(N).

• Insert: O(1).

• Range: O(1) per point in range.

M " !N

LB

RT

Grid implementation. Fast, simple solution for well-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Lists are too long, even though average length is short.

Need data structure that gracefully adapts to data.

10

Clustering

Grid implementation. Fast, simple solution for well-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

11

Clustering

half the squares are empty half the points are

in 10% of the squares

13,000 points, 1000 grid squares

! range search

! space partitioning trees

! intersection search

! cluster search

12

Use a tree to represent a recursive subdivision of 2D space.

Quadtree. Recursively divide space into four quadrants.

2D tree. Recursively divide space into two halfplanes.

BSP tree. Recursively divide space into two regions.

13

Space-partitioning trees

Grid 2D treeQuadtree BSP tree

14

Space-partitioning trees: applications

Applications.

• Ray tracing.

• 2D range search.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases.

• Nearest neighbor search.

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting.

Grid 2D treeQuadtree BSP tree

Idea. Recursively divide space into 4 quadrants.

Implementation. 4-way tree (actually a trie).

Benefit. Good performance in the presence of clustering.

Drawback. Arbitrary depth!

15

Quadtree

a

b

c

e

f

g h

d

public class QuadTree

{

 private Quad quad;

 private Value val;

 private QuadTree NW, NE, SW, SE;

}

(01.., 00..)

(0..., 1...)
a

b c

d e f g

h

SENW SWNE

16

Quadtree: larger example

http://en.wikipedia.org/wiki/Image:Point_quadtree.svg

17

Quadtree: 2D range search

Range search. Find all keys in a given 2D range.

• Recursively find all keys in NE quad (if any could fall in range).

• Recursively find all keys in NW quad (if any could fall in range).

• Recursively find all keys in SE quad (if any could fall in range).

• Recursively find all keys in SW quad (if any could fall in range).

Typical running time. R + log N.

a

b

c

e

f

g h

d
a

b c

d e f g

h

18

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force. F =
G m1 m2

r2

19

Subquadratic N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

• Treat cluster of particles as a single aggregate particle.

• Compute force between particle and center of mass of aggregate particle.

20

Barnes-Hut algorithm for N-body simulation.

Barnes-Hut.

• Build quadtree with N particles as external nodes.

• Store center-of-mass of subtree in each internal node.

• To compute total force acting on a particle, traverse tree, but stop as soon

as distance from particle to quad is sufficiently large.

21

Curse of dimensionality

Range search / nearest neighbor in k dimensions?

Main application. Multi-dimensional databases.

3D space. Octrees: recursively divide 3D space into 8 octants.

100D space. Centrees: recursively divide 100D space into 2100 centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

Recursively partition plane into two halfplanes.

22

2D tree

1

2

3

4

18

6

7

8

9

10

11

12

13

14

15

16

17

5

19

Implementation. BST, but alternate using x- and y-coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.

23

2D tree

even levels

q

p

points
left of p

points
right of p

points
below q

points
above q

odd levels

p

q

1
2

3

4

6

7

8

9

10

11

12

13

14

15

16

19

18

5

17

24

2D tree: 2D range search

Range search. Find all keys in a given 2D range.

• Check if point in node lies in given range.

• Recursively find all keys in left/top subdivision (if any could fall in range).

• Recursively find all keys in right/bottom subdivision (if any could fall in range).

Worst case (assuming tree is balanced). R + !N.

Typical case. R + log N

25

kD Tree

kD tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2D trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Discovered by an undergrad in an algorithms class!

• Adapts well to high-dimensional and clustered data.

level ! i (mod k)

points
whose ith

coordinate
is less than p’s

points
whose ith

coordinate
is greater than p’s

p

Basis of many geometric algorithms. Search in a planar subdivision.

grid 2D tree Voronoi diagram intersecting lines

basis

representation

cells

search cost

extends to kD

picture

"N h-v lines N points N points "N lines

2D array of N

lists
N-node BST N-node multilist ~N-node BST

~N squares N rectangles N polygons ~N triangles

1 log N log N log N

too many cells easy
cells too

complicated

use (k-1)D

hyperplane

26

Summary

! range search

! space partitioning trees

! intersection search

27 28

Search for intersections

Problem. Find all intersecting pairs among N geometric objects.

Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.

Brute force. Test all !(N2) pairs of line segments for intersection.

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

29

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

1

2

3

4

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

• Right endpoint of h-segment: remove y-coordinate from ST.

30

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

5

1

2

3

4

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

• Right endpoint of h-segment: remove y-coordinate from ST.

• v-segment: range search for interval of y endpoints.

31

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

range

search
6

5

1

2

3

4

32

Orthogonal segment intersection search: sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-coordinate into ST. O(N log N)

• Delete y-coordinate from ST. O(N log N)

• Range search. O(R + N log N)

Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3D and more general shapes.

N = # line segments

R = # intersections

33

Immutable h-v segment data type

public final class SegmentHV implements Comparable<SegmentHV>

{

 public final int x1, y1;

 public final int x2, y2;

 public SegmentHV(int x1, int y1, int x2, int y2)

 { ... }

 public boolean isHorizontal()

 { ... }

 public boolean isVertical()

 { ... }

 public int compareTo(SegmentHV b)

 { ... }

}

compare by x-coordinate;

break ties by y-coordinate

(x1, y) (x2, y)

horizontal segment vertical segment

(x, y1)

(x, y2)

is segment horizontal?

is segment vertical?

constructor

34

Sweep-line event subclass

private class Event implements Comparable<Event>

{

 private int time;

 private SegmentHV segment;

 public Event(int time, SegmentHV segment)

 {

 this.time = time;

 this.segment = segment;

 }

 public int compareTo(Event that)

 { return this.time - that.time; }

}

 MinPQ<Event> pq = new MinPQ<Event>();

 for (int i = 0; i < N; i++)

 {

 if (segments[i].isVertical())

 {

 Event e = new Event(segments[i].x1, segments[i]);

 pq.insert(e);

 }

 else if (segments[i].isHorizontal())

 {

 Event e1 = new Event(segments[i].x1, segments[i]);

 Event e2 = new Event(segments[i].x2, segments[i]);

 pq.insert(e1);

 pq.insert(e2);

 }

 }

35

Sweep-line algorithm: initialize events

horizontal

segment

vertical

segment

initialize PQ

36

Sweep-line algorithm: simulate the sweep line

int INF = Integer.MAX_VALUE;

SET<SegmentHV> set = new SET<SegmentHV>();

while (!pq.isEmpty())

{

 Event event = pq.delMin();

 int sweep = event.time;

 SegmentHV segment = event.segment;

 if (segment.isVertical())

 {

 SegmentHV seg1, seg2;

 seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);

 seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);

 for (SegmentHV seg : set.range(seg1, seg2))

 StdOut.println(segment + " intersects " + seg);

 }

 else if (sweep == segment.x1) set.add(segment);

 else if (sweep == segment.x2) set.remove(segment);

}

37

General line segment intersection search

Extend sweep-line algorithm

• Maintain order of segments that intersect sweep line by y-coordinate.

• Intersections can only occur between adjacent segments.

• Add/delete line segment # one new pair of adjacent segments.

• Intersection # swap adjacent segments.

order of segments

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A

38

Line segment intersection: implementation

Efficient implementation of sweep line algorithm.

• Maintain PQ of important x-coordinates: endpoints and intersections.

• Maintain set of segments intersecting sweep line, sorted by y.

• O(R log N + N log N).

Implementation issues.

• Degeneracy.

• Floating point precision.

• Use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest"

and "next smallest" queries

! range search

! space partitioning trees

! intersection search

! VLSI rules check

39 40

Rectangle intersection search

Goal. Find all intersections among h-v rectangles.

Application. Design-rule checking in VLSI circuits.

41

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking.

• Certain wires cannot intersect.

• Certain spacing needed between different types of wires.

• Debugging = rectangle intersection search.

42

Algorithms and Moore's law

"Moore’s law." Processing power doubles every 18 months.

• 197x: need to check N rectangles.

• 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

• 197x: takes M days.

• 197(x+1.5): takes (4M)/2 = 2M days. (!)

 Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm

Sweep vertical line from left to right.

• x-coordinates of rectangles define events.

• Maintain set of y-intervals intersecting sweep line.

• Left endpoint: search set for y-interval; insert y-interval.

• Right endpoint: delete y-interval.

43

Rectangle intersection search

44

Interval search trees

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)

operation brute
interval search

tree

best

in theory

insert interval 1 log N log N

delete interval N log N log N

find an interval that

intersects (lo, hi)
N log N log N

find all intervals that

intersects (lo, hi)
N R log N R + log N

augmented red-black tree

N = # intervals

R = # intersections

45

Rectangle intersection search: costs summary

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-interval into ST. O(N log N)

• Delete y-interval from ST. O(N log N)

• Interval search. O(R + N log N)

Efficiency relies on judicious use of data structures.

N = # rectangles

R = # intersections

! range search

! space partitioning trees

! intersection search

! cluster search

46

47

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem.

 Divide into clusters so that points in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Identify patterns in gene expression.

• Document categorization for web search.

• Similarity searching in medical image databases

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s

Reference: Nina Mishra, HP Labs

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.

Given an integer k, find a k-clustering such that spacing is maximized.

48

spacing

k = 4

k-clustering of maximum spacing

49

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a different

cluster, and add an edge between them.

• Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm (!)

(stop when there are k connected components).

Proposition. Kruskal’s algorithm finds a k-clustering of maximum spacing.

Alternate algorithm. Run Prim and delete k-1 edges of largest weight.

Single-link clustering algorithm

50

Dendrogram.

Scientific visualization of hypothetical sequence of evolutionary events.

• Leaves = genes.

• Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

Clustering application: dendrograms

51

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

Dendrogram of cancers in human Geometric search summary: algorithms of the day

52

1D range search BST

kD range search kD tree

1D interval
intersection search

interval search tree

2D orthogonal line
intersection search

sweep line reduces to
1D range search

2D orthogonal rectangle
intersection search

sweep line reduces to
1D interval intersection search

cluster search Kruskal’s algorithm

