Cast of characters

Programmer needs to develop a working solution.

Client wants problem

solved efficiently.

Theoretician wants to understand.

Basic blocking and tackling is sometimes necessary [this lecture].

Reasons to analyze algorithms

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics

will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage

Analysis of Algorithms

• estimating running time

order-of-growth hypotheses

mathematical analysis

input modelsmeasuring space

Algorithms in Java, Chapter 2

Intro to Programming in Java, Section 4.1 http://www.cs.princeton.edu/algs4

Reference:

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 5, 2009 9:33:51 AM

"As soon as an Analytic Engine exists, it will necessarily guide the future

course of the science. Whenever any result is sought by its aid, the question

G

ald

0

amight" amight amight

performance

consider

Running time

Charles Babbage (1864)

do you have to turn the crank?

how many times

Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N² steps.
- FFT algorithm: N log N steps, enables new technology.

Freidrich Gauss

1805

Some algorithmic successes

N-body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N² steps.
- Barnes-Hut: N log N steps, enables new research.

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Universe = computer itself.

• estimating running time

- order-of-growth hypotheses
- input models
- measuring space

Experimental algorithmics

Every time you run a program you are doing an experiment!

Why is my program so slow ??

First step. Debug your program! Second step. Choose input model for experiments. Third step. Run and time the program for problems of increasing size.

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.

<pre>% more input8.txt 8</pre>
30 -30 -20 -10 40 0 10 5
<pre>% java ThreeSum < input8.txt</pre>
4
30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

Context. Deeply related to problems in computational geometry.

3-sum: brute-force algorithm

Empirical analysis

11

Run the program for various input sizes and measure running time.

ThreeSum.j	ava
N	time (seconds) †
1024	0.26
2048	2.16
4096	17.18
8192	137.76

† Running Linux on Sun-Fire-X4100

Measuring the running time

Q. How to time a program?

A. Manual.

Measuring the running time

- Q. How to time a program?
- A. Automatic.

Data analysis

Plot running time as a function of input size N.

Data analysis

Log-log plot. Plot running time vs. input size N on log-log scale.

13

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

Ν	time (seconds) †	ratio	lg ratio
512	0.03	-	
1024	0.26	7.88	2.98
2048	2.16	8.43	3.08
4096	17.18	7.96	2.99
8192	137.76	7.96	2.99
			^

seems to converge to a constant $b \approx 3$

Hypothesis. Running time is about $a N^{b}$ with $b = \lg$ ratio. Caveat. Can't identify logarithmic factors with doubling hypothesis.

17

19

Experimental algorithmics

Many obvious factors affect running time:

- Machine.
- Compiler.
- Algorithm.
- Input data.

More factors (not so obvious):

- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications.

Bad news. It is often difficult to get precise measurements. Good news. Easier than other sciences.

e.g., can run huge number of experiments

Prediction and verification

Hypothesis. Running time is about $a N^3$ for input of size N.

Q. How to estimate a?Ntime (seconds)A. Run the program!409617.18409617.15

Ν	time (seconds)	
4096	17.18	
4096	17.15	$17.17 = a \times 4096^3$
4096	17.17	$\Rightarrow a = 2.5 \times 10^{-10}$

Refined hypothesis. Running time is about $2.5 \times 10^{-10} \times N^3$ seconds.

Prediction. 1,100 seconds for N = 16,384. Observation.

N	time (seconds)
16384	1118.86
validate	s hypothesis!

War story (from COS 126)

Q. How long does this program take as a function of N?

<pre>public class EditDistance {</pre>	
<pre>String s = StdIn.readString();</pre>	
<pre>int N = s.length();</pre>	
for (int i = 0; i < N; i++)	
for (int j = 0; j < N; j++)	
distance[i][j] =	
}	

	N	time	N	time
	1024	0.11	256	0.5
Jenny. ~ $c_1 N^2$ seconds.	2048	0.35	512	1.1
Kenny. ~ c2 N seconds.	4096	1.6	1024	1.9
Kenny. C2 N Seconds.	9182	6.5	2048	3.9

Jenny

Kenny

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

THE CLASSIC WORK	THE CLASSIC WORK	THE CLASSIC WORK	
NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	
The Art of	The Art of	The Art of	19
Computer	Computer	Computer	
Programming	Programming	Programming	
VOLUME 1	VOLUME 2	VOLIME 3	E.C.
Fundamental Algorithms	Seminumerical Algorithms	Sorting and Searching	
Third Edition	Third Edition	Second Edition	
DONALD E. KNUTH	DONALD E. KNUTH	DONALD E. KNUTH	Donald Knuth

Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

21

Cost of basic operations

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating point add	a + b	4.6
floating point multiply	a * b	4.2
floating point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

mathematical analysis

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

operation	example	nanoseconds †
variable declaration	int a	C 1
assignment statement	a = b	C 2
integer compare	a < b	<i>C</i> ₃
array element access	a[i]	C 4
array length	a.length	C 5
1D array allocation	new int[N]	<i>c</i> ₆ <i>N</i>
2D array allocation	new int[N][N]	C7 N ²
string length	s.length()	C8
substring extraction	s.substring(N/2, N)	C 9
string concatenation	s + t	<i>c</i> ₁₀ <i>N</i>

Novice mistake. Abusive string concatenation.

Q. How many instructions as a function of N?

<pre>int count = 0; for (int i = 0; i < N; i++) if (a[i] == 0) count++;</pre>			
operation	frequency		
variable declaration	2		
assignment statement	2		
less than comparison	N + 1		
equal to comparison	Ν		
array access	N		
increment	≤ 2 N ×		

between N (no zeros) and 2N (all zeros)

25

27

Tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

 Ex 1.
 $6N^3 + 20N + 16$ ~ $6N^3$

 Ex 2.
 $6N^3 + 100N^{4/3} + 56$ ~ $6N^3$

 Ex 3.
 $6N^3 + 17N^2 \lg N + 7N$ ~ $6N^3$

discard lower-order terms (e.g., N = 1000 6 trillion vs. 169 million)

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Example: 2-sum

Q. How many instructions as a function of N?

Example: 2-sum

Q. How long will it take as a function of N?

<pre>int count = 0;</pre>	1
for (int $i = 0; i < N; i++$)	
for (int $j = i+1; j < N; j++$)	
if (a[i] + a[j] == 0) count++;	"inner loop"

operation	frequency	time per op	total time
variable declaration	~ N	C 1	$\sim c_1 N$
assignment statement	~ N	C ₂	~ c ₂ N
less than comparison	~ 1/2 N ²		~ c3 N ²
equal to comparison	~ 1/2 N ²	C 3	~ (3 // -
array access	~ N ²	C 4	~ C4 N ²
increment	$\leq N^2$	C 5	$\leq c_5 N^2$
total			~ c N ²

depends on input data 🖊

Example: 3-sum

Q. How many instructions as a function of N?

Remark. Focus on instructions in inner loop; ignore everything else!

29

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

Bottom line. We use approximate models in this course: $T_N \sim c N^3$.

Common order-of-growth hypotheses

To determine order-of-growth:

- Assume a power law $T_N \sim a N^{b}$.
- Estimate exponent b with doubling hypothesis.
- Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java

Food for precept. How is it implemented?

	ThreeSu	m.java	ThreeSumD	eluxe.java
	N	time (seconds)	N	time (seconds)
	1024	0.26	1,000	0.43
	2048	2.16	2,000	0.53
rvations	4096	17.18	4,000	1.01
	8192	137.76	8,000	2.87
			16,000	11.00
			32,000	44.64
			64,000	177.48

estimating running tim

mathematical analysi

order-of-growth hypotheses

Finput models

31

obser

Common order-of-growth hypotheses

Good news. the small set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe order-of-growth of typical algorithms.

Common order-of-growth hypotheses

growth rate	name	typical code framework	description	example	T(2N T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search	~ 1
N	linear	<pre>for (int i = 0; i < N; i++) {</pre>	loop	find the maximum	2
N log N	linearithmic	[see lecture 5]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see lecture 24]	exhaustive search	check all possibilities	T(N)

Practical implications of order-of-growth

- Q. How many inputs can be processed in minutes?
- Ex. Customers lost patience waiting "minutes" in 1970s; they still do.
- Q. How long to process millions of inputs?
- Ex. Population of NYC was "millions" in 1970s; still is.

For back-of-envelope calculations, assume:

decade	processor speed	instructions per second
1970s	1 MHz	106
1980s	10 MHz	107
1990s	100 MHz	10 ⁸
2000s	1 GHz	10 ⁹

_			
seconds	equivalent		
1	1 second		
10	10 seconds		
10²	1.7 minutes		
10 ³	17 minutes		
10 ⁴	2.8 hours		
10 ⁵	1.1 days		
106	1.6 weeks		
107	3.8 months		
10 ⁸	3.1 years		
10 ⁹	3.1 decades		
10 ¹⁰	3.1 centuries		
	forever		
10 ¹⁷	age of universe		

33

35

Practical implications of order-of-growth

growth	pr	oblem size so	lvable in minute	25	ti	me to process i	millions of inpu	its
rate	1970s	1980s	1990s	2000 <i>s</i>	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
Ν	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ³	hundred	hundreds	thousand	thousands	never	never	never	millennia

Practical implications of order-of-growth

growth		deration	effect on a program that runs for a few seconds		
rate	name	description	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	-	-	
log N	logarithmic	nearly independent of input size	-	-	
Ν	linear	optimal for N inputs	a few minutes	100×	
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100×	
N ²	quadratic	not practical for large problems	several hours	10×	
N ³	cubic	not practical for medium problems	several weeks	4-5×	
2 ^N	exponential	useful only for tiny problems	forever	1x	

 estimating running time mathematical analysis order-of-growth hypotheses input models measuring space 	
 mathematical analysis order-of-growth hypotheses input models 	
 mathematical analysis order-of-growth hypotheses input models 	
 mathematical analysis order-of-growth hypotheses input models 	
 mathematical analysis order-of-growth hypotheses input models 	
 mathematical analysis order-of-growth hypotheses input models 	
 mathematical analysis order-of-growth hypotheses input models 	
> input models	
	▶ input models

38

37

Types of analyses

Best case. Lower bound on cost

- determined by "easiest" input
- provides a goal for all inputs

Worst case. Upper bound on cost

- determined by "most difficult" input
- provides guarantee for all inputs

Average case. "Expected" cost

- need a model for "random" input
- provides a way to predict performance

- Ex 1. Array accesses for 3-sum
- Best: ~ ¹/₂N².
- Average: ~ ¹/₂N²
- Worst: $\sim \frac{1}{2}N^2$

Ex 2. Compares for insertion sort	t
-----------------------------------	---

- Best: N-1.
- Average: ~ $\frac{1}{4}$ N²
- Worst: $\frac{1}{2}N(N-1) \sim \frac{1}{2}N^2$
- (Details in Lecture 4)

Commonly-used notations

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	10 N ² 10 N ² + 22 N log N 10 N ² + 2 N +37	provide approximate model
Big Theta	asymptotic growth rate	Θ(N ²)	N ² 9000 N ² 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(<i>N</i> ²)	N ² 100 N 22 N log N+ 3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	Ω(N ²)	9000 N ² N ⁵ N ³ +22 N log N+3 N	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model.

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).

Typical memory requirements for primitive types in Java

Bit. 0 or 1. Byte. 8 bits. Megabyte (MB). 2²⁰ bytes ~ 1 million bytes. Gigabyte (GB). 2³⁰ bytes ~ 1 billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

type	bytes
char[]	2N + 16
int[]	4N + 16
double[]	8N + 16

type	bytes
char[][]	2N ² + 20N + 16
int[][]	$4N^2 + 20N + 16$
double[][]	8N ² + 20N + 16

one-dimensional arrays

two-dimensional arrays

Q. What's the biggest double[][] array you can store on your computer? A. typical computer in 2008 has about 26B memory

Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Ex 1. A complex object consumes 24 bytes of memory.

Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Ex 2. A virgin string of length N consumes 2N + 40 bytes.

Example 1

Q. How much memory does this data type use as a function of N?

Α.

<pre>public class QuickUWPC {</pre>
<pre>private int[] id; private int[] sz;</pre>
<pre>public QuickUnion(int N) {</pre>
<pre>id = new int[N]; sz = new int[N];</pre>
<pre>for (int i = 0; i < N; i++) id[i] = i; for (int i = 0; i < N; i++) sz[i] = 1; }</pre>
<pre>public boolean find(int p, int q) { }</pre>
<pre>public void unite(int p, int q) { } }</pre>

Example 2

Q. How much memory does this code fragment use as a function of N? A.

Remark. Java automatically reclaims memory when it is no longer in use.

not always easy for Java to know 🖊

Turning the crank: summary

In principle, accurate mathematical models are available. In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

• Limits on experiments insignificant compared to other sciences.

- Mathematics might be difficult?
- Only a few functions seem to turn up.
- Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.