
1

1

System Calls and Standard I/O

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of Today’s Class
• System calls
o How a user process contacts the Operating System
o For advanced services that may require special privilege

• Standard I/O library
o Generic I/O support for C programs
o A smart wrapper around I/O-related system calls
o Stream concept, line-by-line input, formatted output, ...

2

3

System Calls

4

Communicating With the OS

• System call
o Request to the operating system to perform a task
o … that the process does not have permission to perform

• Signal
o Asynchronous notification sent to a process
o … to notify the process of an event that has occurred

User Process

Operating System

signals systems calls

3

5

Processor Modes
• The OS must restrict what a user process can do

o What instructions can execute
o What portions of the address space are accessible

• Supervisor mode (or kernel mode)
o Can execute any instructions in the instruction set

– Including halting the processor, changing mode bit, initiating I/O
o Can access any memory location in the system

– Including code and data in the OS address space

• User mode
o Restricted capabilities

– Cannot execute privileged instructions
– Cannot directly reference code or data in OS address space

o Any such attempt results in a fatal “protection fault”
– Instead, access OS code and data indirectly via system calls

6

Main Categories of System Calls
• File system
o Low-level file I/O
o E.g., creat, open, read, write, lseek, close

• Multi-tasking mechanisms
o Process control
o E.g., fork, wait, exec, exit, signal, kill

• Inter-process communication
o E.g., pipe, dup, dup2

• Unix has a few hundred system calls
o See “man 2 intro” or /usr/include/syscall.h

4

7

System Calls
• Method for user process to invoke OS services

• Called just like a function
o Essentially a “protected” function call
o That transfers control to the OS and back

File System

creat, open, close,
read, write, lseek

Application
OS

User
Process

8

Implementing a System Call
• System calls are often implemented using traps
o OS gains control through trap
o Switches to supervisor mode
o Performs the service
o Switches back to user mode
o Gives control back to user

movl $1, %eax

int $0x80

Which call?
1: exit
2: fork
3: read
4: write
5: open
6: close
…

Trap to the OS

System-call specific arguments are put in registers

5

9

Main UNIX System Calls for Files
• Creat: int creat(char *pathname, mode_t mode);

o Create a new file and assign a file descriptor

• Open: int open(char *pathname, int flags, mode_t mode);
o Open the file pathname and return a file descriptor

• Close: int close(int fd);
o Close a file descriptor fd

• Read: int read(int fd, void *buf, int count);
o Read up to count bytes from fd, into the buffer at buf

• Write: int write(int fd, void *buf, int count);
o Writes up to count bytes into fd, from the buffer at buf

• Lseek: int lseek(int fd, int offset, int whence);
o Assigns the file pointer to a new value by applying an offset

10

Example: UNIX open() System Call
• Converts a path name into a file descriptor
o int open(const char *pathname, int flags,
mode_t mode);

• Arguments
o Pathname: name of the file
o Flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
o Mode: permissions to set if file must be created

• Returns
o Integer file descriptor (or a -1 if an error)

• Performs a variety of checks
o E.g., whether the process is entitled to access the file

6

11

Example: UNIX read() System Call
• Converts a path name into a file descriptor
o int read(int fd, void *buf, int count);

• Arguments
o File descriptor: integer descriptor returned by open()
o Buffer: pointer to memory to store the bytes it reads
o Count: maximum number of bytes to read

• Returns
o Number of bytes read

– Value of 0 if nothing more to read
– Value of -1 if an error

• Performs a variety of checks
o Whether file has been opened, whether reading is okay

12

Standard I/O Library

7

13

Standard I/O Library
• Portability
o Generic I/O support for C programs
o Specific implementations for various host OSes
o Invokes the OS-specific system calls for I/O

• Abstractions for C programs
o Streams
o Line-by-line input
o Formatted output

• Additional optimizations
o Buffered I/O
o Safe writing

File System

Stdio Library

Appl Prog

user
OS

14

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Operating
System

Stdio Library FILE * stream

Appl Prog
User

process
int fd

8

15

Stream Abstraction
• Any source of input or destination for output
o E.g., keyboard as input, and screen as output
o E.g., files on disk or CD, network ports, printer port, …

• Accessed in C programs through file pointers
o E.g., FILE *fp1, *fp2;
o E.g., fp1 = fopen(“myfile.txt”, “r”);

• Three streams provided by stdio.h
o Streams stdin, stdout, and stderr

– Typically map to keyboard, screen, and screen
o Can redirect to correspond to other streams

– E.g., stdin can be the output of another program
– E.g., stdout can be the input to another program

16

Sequential Access to a Stream
• Each stream has an associated file position
o Starting at beginning of file (if opened to read or write)
o Or, starting at end of file (if opened to append)

• Read/write operations advance the file position
o Allows sequencing through the file in sequential manner

• Support for random access to the stream
o Functions to learn current position and seek to new one

file file

9

17

Example: Opening a File
•FILE *fopen(“myfile.txt”, “r”)
o Open the named file and return a stream
o Includes a mode, such as “r” for read or “w” for write

• Creates a FILE data structure for the file
o File descriptor, mode, status, buffer, …
o Assigns fields and returns a pointer

• Opens or creates the file, based on the mode
o Write (‘w’): create file with default permissions
o Read (‘r’): open the file as read-only
o Append (‘a’): open or create file, and seek to the end

18

Example: Formatted I/O
•int fprintf(fp1, “Number: %d\n”, i)
o Convert and write output to stream in specified format

•int fscanf(fp1, “FooBar: %d”, &i)
o Read from stream in format and assign converted values

• Specialized versions
o printf(…) is just fprintf(stdout, …)
o scanf(…) is just fscanf(stdin, …)

10

19

Example: A Simple getchar()
int getchar(void) {

static char c;
if (read(0, &c, 1) == 1)

return c;
else return EOF;

}

• Read one character from stdin
o File descriptor 0 is stdin
o &c points to the buffer
o 1 is the number of bytes to read

• Read returns the number of bytes read
o In this case, 1 byte means success

20

Making getchar() More Efficient
• Poor performance reading one byte at a time
o Read system call is accessing the device (e.g., a disk)
o Reading one byte from disk is very time consuming
o Better to read and write in larger chunks

• Buffered I/O
o Read a large chunk from disk into a buffer

– Dole out bytes to the user process as needed
– Discard buffer contents when the stream is closed

o Similarly, for writing, write individual bytes to a buffer
– And write to disk when full, or when stream is closed
– Known as “flushing” the buffer

11

21

Better getchar() with Buffered I/O

int getchar(void) {
static char base[1024];
static char *ptr;
static int cnt = 0;

if (cnt--) return *ptr++;

cnt = read(0, base, sizeof(base));
if (cnt <= 0) return EOF;
ptr = base;
return getchar();

}

persistent variables

base

ptr

But, many functions may read (or write) the stream…

22

Details of FILE in stdio.h (K&R 8.5)
#define OPEN_MAX 20 /* max files open at once */

typedef struct _iobuf {
int cnt; /* num chars left in buffer */
char *ptr; /* ptr to next char in buffer */
char *base; /* beginning of buffer */
int flag; /* open mode flags, etc. */
char fd; /* file descriptor */

} FILE;
extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

12

23

A Funny Thing About Buffered I/O

int main() {
printf(“Step 1\n”);
sleep(10);
printf(“Step2\n”);

}

• Run “a.out > out.txt &” and then “tail -f out.txt”
o To run a.out in the background, outputting to out.txt
o And then to see the contents on out.txt

• Neither line appears till ten seconds have elapsed
o Because the output is being buffered
o Add fflush(stdout) to flush the output buffer
o fclose() also flushes the buffer before closing

24

Challenges of Writing
• Write system call
o int write(int fd, void *buf, int count);
o Writes up to count bytes into fd, from the buffer at buf

• Problem: might not write everything
o Can return a number less than count
o E.g., if the file system ran out of space

• Solution: safe_write
o Try again to write the remaining bytes
o Produce an error if it impossible to write more

13

25

Safe-Write Code
int safe_write(int fd, char *buf, int nbytes)
{

int n;
char *p = buf;
char *q = buf + nbytes;
while (p < q) {

if ((n = write(fd, p, (q-p)*sizeof(char))) > 0)
p += n/sizeof(char);

else
perror(“safe_write:”);

}
return nbytes;

}

p qp

26

Summary of System Calls and Stdio

• Standard I/O library provides simple abstractions
o Stream as a source or destination of data
o Functions for manipulating files and strings

• Standard I/O library builds on the OS services
o Calls OS-specific system calls for low-level I/O
o Adds features such as buffered I/O and safe writing

• Powerful examples of abstraction
o User programs can interact with streams at a high level
o Standard I/O library deals with some more gory details
o Only the OS deals with the device-specific details

