Processes

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

=
Goals of Today’s Lecture

* Processes
o Process vs. program
o Context switching

» Creating a new process
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

« Communication between processes
o Pipe between two processes
o Redirecting stdin and stdout

Processes

(
Program vs. Process

e Program
o Executable code, no dynamic state

* Process
o An instance of a program in execution, with its own
— Address space (illusion of a memory)
» Text, RoData, BSS, heap, stack
— Processor state (illusion of a processor)
* EIP, EFLAGS, registers
— Open file descriptors (illusion of a disk)
o Either running, waiting, or ready...

» Can run multiple instances of the same program
o Each as its own process, with its own process ID

Y

-
Life Cycle of a Process

ﬁ@_’

* Running: instructions are being executed
» Waiting: waiting for some event (e.g., /O finish)

» Ready: ready to be assigned to a processor

— (Termination

~

OS Supports Process Abstraction

» Supporting the abstraction

o Protected from each other

* Main memory
o Swapping pages to/from disk
o Virtual memory

* Processor

o Switching which process
gets to run on the CPU

o Saving per-process state
on a “context switch”

o Multiple processes share resources

User

Process

User
Process

Operating System

Hardware

-
When to Change Which Process is Running?

* When a process is stalled waiting for 1/O
o Better utilize the CPU, e.g., while waiting for disk access

- CPU /0 CPU 110 CPU I}

2 - CPU /0 CPU 110 CPU I}

* When a process has been running for a while

o Sharing on a fine time scale to give each process the
illusion of running on its own machine

o Trade-off efficiency for a finer granularity of fairness

Y

-
Switching Between Processes

* Context Process 1 Process 2
o State the OS needs to !

restart a preempted iW ”
process Running Save context | aitin

e Context switch

o Saving the context of i
current process N
o Restoring the saved Waitihg

context of some %
process e |

Running

o Passing control to this T ; T
newly restored process Running | Load context 3 Waiting
|

9

¢

f

=
Context: What the OS Needs to Save &

* Process state
o New, ready, waiting, halted

» CPU registers
o EIP, EFLAGS, EAX, EBX, ...

* 1/O status information
o Open files, I/0 requests, ...

* Memory management information
o Page tables

» Accounting information
o Time limits, group ID, ...

* CPU scheduling information
o Priority, queues

Creating a New Process

©)

-
Why Start a New Process? @

* Run a new program
o E.g., shell executing a program entered at command line
o Or, even running an entire pipeline of commands
o Such as “wc -1 * | sort | unig -c | sort —nr”

~N

* Run a new thread of control for the same program
o E.g., a Web server handling a new Web request
o While continuing to allow more requests to arrive
o Essentially time sharing the computer

» Underlying mechanism
o A process runs “fork” to create a child process
o (Optionally) child process does “exec” of a new program.

4 R
Creating a New Process q@

* Cloning an existing process
o Parent process creates a new child process
o The two processes then run concurrently parent

* Child process inherits state from parent
o ldentical (but separate) copy of virtual
address space
o Copy of the parent’s open file descriptors
o Parent and child share access to open files

¢ Child then runs independently
o Executing independently, including invoking a
new program
o Reading and writing its own address space

child

2)

4)
Fork System Call @
* Fork is called once
o But returns twice, once in each process
* Telling which process is which
o Parent: fork() returns the child’'s process ID
o Child: fork() returns a 0
pid = fork(Q);
if (pid '=0) {
/* in parent */
} else {
/* in child */
by
B
4)
Fork and Process State q@
* Inherited » Separate in child
o User and group IDs o Process ID
o Signal handling settings o Address space
> Stdio (memory)
o File pointers o File descriptors
o Root directory o Parent process ID
o File mode creation mask o Pending signals
o Resource limits o Time signal reset times
o Controlling terminal ° ...
o All machine register
states

o Control register(s)

o ...

Y

-

Example: What Output?

int main()

{
pid_t pid;
int x = 1;

pid = fork();

if (pid '=0) {
printf(“parent: x = %d\n”, --X);
exit(0);

} else {
printf(““child: x = %d\n”, ++Xx);
exit(0);

be

3

s)

-
Executing a New Program

* Fork copies the state of the parent process
o Child continues running the parent program
o ... with a copy of the process memory and registers

* Need a way to invoke a new program
o In the context of the newly-created child process

* Example _ _
program null-terminated list of arguments

\ (to become “argv[]”)
[——

~
execlp(“1s”, “Is”, “-1”, NULL);
fprintf(stderr, “exec failed\n”);
exit(l);

)

~
Waiting for the Child to Finish &%

~

» Parent may want to wait for children to finish
o Example: a shell waiting for operations to complete

» Waiting for any some child to terminate: wait()
o Blocks until some child terminates
o Returns the process ID of the child process
o Or returns -1 if no children exist (i.e., already exited)

» Waiting for a specific child to terminate: waitpid()
o Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait_h>

pid_t wait(int *status);

\. | pid_t waitpid(pid_t pid, int *status, int options); _E/
4)
Example: A Simple Shell q@

 Shell is the parent process
o E.g., bash

e Parses command line
o E.g., “Is—I"

* Invokes child process
o Fork, execvp

* Waits for child
o Wait

®)

-
Example: A Simple Shell

.. parse command line ..
pid = fork();
if (pid == -1)
fprintf(stderr, “fork failed\n”);
else if (pid == 0) {
/* in child */
execvp(file, argv);
fprintf(stderr, “exec failed\n”);
} else {
/* In parent */
pid = wait(&status);
}

. return to top of loop

2)

=
Combined Fork/Exec/Wait

&\

 Common combination of operations
o Fork to create a new child process
o Exec to invoke new program in child process
o Wait in the parent process for the child to complete

» Single call that combines all three
o int system(const char *cmd);

» Example

int main()

{
}

system(““‘echo Hello world™);

»)

10

<

Communication Between Processes

)

-

\

Communication Between Processes q&

» Mechanism by which two processes exchange information
and coordinate activities

Computer

Computer

Computer

>

ST

process a

Network

different machines

Computer

Computer

®e

same machine

2)

11

4)
Interprocess Communication &

* Pipes
o Processes on the same machine
o One process spawns the other
o Used mostly for a pipeline of filters

» Sockets
o Processes on any machines
o Processes created independently
o Used for client/server communication (e.g., Web)

Both provide abstraction of an “ordered stream of bytes.”

2)

4)

Pipes q&

» Provides an interprocess communication channel

output ™ input
Process A" P P Process B

kY

+ Afilter is a process that reads from stdin and writes to
stdout

stdin - stdout
» Filter >

Proglt—4___I——Filter|—4_}—Filter —{_—Prog2

%)

12

-

N
Example Use of Pipes @

» Compute a histogram of content types in my e-mail
o Many e-mail messages, consisting of many lines
o Lines like “Content-Type: image/jpeg” indicate the type

* Pipeline of UNIX commands
o ldentifying content type: grep -1 Content-Type *
o Extracting just the type: cut -d™ " -2
o Sorting the list of types: sort
o Counting the unique types: uniq -c
o Sorting the counts: sort —nr

» Simply running this at the shell prompt:
o grep -i Content-Type * | cut -d" " -2 | sort |
uniqg -c | sort —-nr

=)
()
Creating a Pipe q@q
¢ .
Process AP] (HEPY P cess B
* Pipe is a communication channel abstraction
= Process A can write to one end using “write” system call
- Process B can read from the other end using “read” system call
» System call
int pipe(int £4[2]);
return 0 upon success -1 upon failure
fd[0] is open for reading
fd[1] is open for writing
« Two coordinated processes created by fork can pass
data to each other using a pipe.
%)

13

-

Pipe Example
int pid, pl2];
ié'(pipe(p) == -1) child
exit(1l);

pid = fork();
if (pid == 0) {
close(pl[l]);
. read using p[0] as fd until EOF ...

y parent
else { —

close(p[0]);

. write using p[1l] as f£d ...
close(p[l]l); /* sends EOF to reader */
wait (&status) ;

write I
parent '\ﬂm-

child

7)

[

Dup

» Duplicate a file descriptor (system call)
int dup(int £d);
duplicates £d as the lowest unallocated descriptor

« Commonly used to implement redirection of

stdin/stdout

a.out < foo

« Example: redirect stdin to “foo” «
int £d;
fd = open(“foo”, O RDONLY, 0);
close(0);
dup (£4d) ;

close(£fd) ;

»)

14

/

Dup?2 &

* For convenience...
dup2 (int £d1, int £d2);
use £d2 (new) to duplicate £d1 (old)
closes £42 if it was in use

« Example: redirect stdin to “foo”
fd = open(“foo”, O RDONLY, 0);
dup2 (£4,0) ;
close(£fd) ;

»)
4 N
Pipes and Stdio q!q
int pid, pl2]1;
if (pipe(p) == -1) child makes stdin (0)
exit(1l); .]
pid = fork(); the read side of the pipe
if (pid == 0) {
close(p[1]):
dup2 (p[0],0);
close(p[0]);
... read from stdin ...
} +_____ﬂ_________parentmaﬂ«asstdom(l)
else { the write side of the pipe
close(p[0]);
dup2(p[11,1);
close(p[1]):
... write to stdout ...
) wait (&status) ; P
write yread .
—. [-
parent G qout stdin child
J,

15

-
Pipes and Exec

int pid, pl2];:

if (pipe(p) == -1) child process
exit(1l);

pid = fork().

close(p[l])
dup2 (p[0]1,0);
close(p[O])-

execl(...)

else {
close(p[0]);
dup2 (p[1],1);
close(pl[1]):
. write to stdout ...

) *éit(&status) ;

if (pid == invokes a new program

‘ write 0 Mread
parent stdout Ystdin

child

)

-
The Beginnings of a UNIX Shell

* A shell is mostly a big loop
o Parse command line from stdin
o Expand wildcards (**")
o Interpret redirections ([, ‘<‘, and *>")
o Pipe, fork, dup, exec, and wait, as necessary

« Start from the code in earlier slides
o And edit till it becomes a UNIX shell
o This is the heart of the last programming assignment

2)

16

-

Conclusion

* Processes
o An instance of a program in execution
o Shares CPU with other processes
o May also communicate with other processes

» System calls for creating processes
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

» System calls for inter-process communication
o Pipe: create a pipe with a write end and a read end
o Open/close: to open or close a file
o Dup2: to duplicate a file descriptor

»)

17

