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Processes

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex
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Goals of Today’s Lecture
• Processes
o Process vs. program
o Context switching

• Creating a new process
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

• Communication between processes
o Pipe between two processes
o Redirecting stdin and stdout
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Processes
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Program vs. Process
• Program
o Executable code, no dynamic state

• Process
o An instance of a program in execution, with its own

– Address space (illusion of a memory)
• Text, RoData, BSS, heap, stack

– Processor state (illusion of a processor)
• EIP, EFLAGS, registers

– Open file descriptors (illusion of a disk)
o Either running, waiting, or ready…

• Can run multiple instances of the same program
o Each as its own process, with its own process ID
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Life Cycle of a Process
• Running: instructions are being executed

• Waiting: waiting for some event (e.g., I/O finish) 

• Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting
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OS Supports Process Abstraction
• Supporting the abstraction
o Multiple processes share resources
o Protected from each other

• Main memory
o Swapping pages to/from disk
o Virtual memory

• Processor
o Switching which process 

gets to run on the CPU
o Saving per-process state

on a “context switch” Hardware

Operating System

User
Process

User
Process
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When to Change Which Process is Running?

• When a process is stalled waiting for I/O
o Better utilize the CPU, e.g., while waiting for disk access

• When a process has been running for a while
o Sharing on a fine time scale to give each process the 

illusion of running on its own machine
o Trade-off efficiency for a finer granularity of fairness

CPU CPU CPUI/O I/O I/O1:
CPU CPU CPUI/O I/O I/O2:
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Switching Between Processes
• Context

o State the OS needs to 
restart a preempted 
process

• Context switch
o Saving the context of 

current process
o Restoring the saved 

context of some 
previously preempted 
process

o Passing control to this 
newly restored process

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningWaiting

Waiting

Waiting

Process 1 Process 2



5

9

Context: What the OS Needs to Save
• Process state 

o New, ready, waiting, halted

• CPU registers 
o EIP, EFLAGS, EAX, EBX, …

• I/O status information 
o Open files, I/O requests, …

• Memory management information 
o Page tables

• Accounting information
o Time limits, group ID, ...

• CPU scheduling information 
o Priority, queues
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Creating a New Process
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Why Start a New Process?
• Run a new program
o E.g., shell executing a program entered at command line
o Or, even running an entire pipeline of commands
o Such as “wc –l * | sort | uniq -c | sort –nr”

• Run a new thread of control for the same program
o E.g., a Web server handling a new Web request
o While continuing to allow more requests to arrive
o Essentially time sharing the computer

• Underlying mechanism
o A process runs “fork” to create a child process
o (Optionally) child process does “exec” of a new program
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Creating a New Process

• Cloning an existing process
o Parent process creates a new child process
o The two processes then run concurrently 

• Child process inherits state from parent 
o Identical (but separate) copy of virtual 

address space
o Copy of the parent’s open file descriptors
o Parent and child share access to open files

• Child then runs independently
o Executing independently, including invoking a 

new program
o Reading and writing its own address space

parent

child
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Fork System Call
• Fork is called once
o But returns twice, once in each process

• Telling which process is which 
o Parent: fork() returns the child’s process ID
o Child: fork() returns a 0

pid = fork();
if (pid != 0) {

/* in parent */
…

} else {
/* in child */
…

}
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Fork and Process State
• Inherited
o User and group IDs
o Signal handling settings
o Stdio
o File pointers
o Root directory
o File mode creation mask
o Resource limits
o Controlling terminal
o All machine register 

states
o Control register(s)
o …

• Separate in child
o Process ID
o Address space 

(memory)
o File descriptors
o Parent process ID
o Pending signals
o Time signal reset times
o …
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Example: What Output?

int main()
{ 

pid_t pid;
int x = 1;

pid = fork();
if (pid != 0) {
printf(“parent: x = %d\n”, --x);
exit(0);

} else {
printf(“child: x = %d\n”, ++x);
exit(0);

}
}
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Executing a New Program
• Fork copies the state of the parent process
o Child continues running the parent program
o … with a copy of the process memory and registers

• Need a way to invoke a new program
o In the context of the newly-created child process

• Example

execlp(“ls”, “ls”, “-l”, NULL);
fprintf(stderr, “exec failed\n”);
exit(1);

program null-terminated list of arguments
(to become “argv[]”)
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Waiting for the Child to Finish
• Parent may want to wait for children to finish
o Example: a shell waiting for operations to complete

• Waiting for any some child to terminate: wait()
o Blocks until some child terminates
o Returns the process ID of the child process
o Or returns -1 if no children exist (i.e., already exited)

• Waiting for a specific child to terminate: waitpid()
o Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);
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Example: A Simple Shell
• Shell is the parent process
o E.g., bash

• Parses command line
o E.g., “ls –l”

• Invokes child process
o Fork, execvp

• Waits for child
o Wait

fork

ls

waitexecvp

bash
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Example: A Simple Shell
… parse command line …

pid = fork();

if (pid == -1)

fprintf(stderr, “fork failed\n”);

else if (pid == 0) {

/* in child */

execvp(file, argv);

fprintf(stderr, “exec failed\n”);

} else {

/* in parent */

pid = wait(&status);

}

… return to top of loop
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Combined Fork/Exec/Wait
• Common combination of operations
o Fork to create a new child process
o Exec to invoke new program in child process
o Wait in the parent process for the child to complete

• Single call that combines all three
o int system(const char *cmd);

• Example

int main()
{

system(“echo Hello world”);
}
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Communication Between Processes

22

Communication Between Processes

different machines

same machine
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Interprocess Communication
• Pipes
o Processes on the same machine
o One process spawns the other
o Used mostly for a pipeline of filters

• Sockets
o Processes on any machines
o Processes created independently
o Used for client/server communication (e.g., Web)

Both provide abstraction of an “ordered stream of bytes.”
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Pipes
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Example Use of Pipes
• Compute a histogram of content types in my e-mail
o Many e-mail messages, consisting of many lines
o Lines like “Content-Type: image/jpeg” indicate the type

• Pipeline of UNIX commands
o Identifying content type: grep -i Content-Type *
o Extracting just the type: cut -d" " -f2
o Sorting the list of types: sort
o Counting the unique types: uniq -c
o Sorting the counts: sort –nr

• Simply running this at the shell prompt:
o grep -i Content-Type * | cut -d" " -f2 | sort | 
uniq -c | sort –nr
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Creating a Pipe
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Pipe Example

child

parent
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Dup

a.out < foo
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Dup2
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Pipes and Stdio

child makes stdin (0)
the read side of the pipe

parent makes stdout (1)
the write side of the pipe
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Pipes and Exec

child process

invokes a new program
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The Beginnings of a UNIX Shell
• A shell is mostly a big loop

o Parse command line from stdin
o Expand wildcards (‘*’)
o Interpret redirections (‘|’, ‘<‘, and ‘>’)
o Pipe, fork, dup, exec, and wait, as necessary

• Start from the code in earlier slides
o And edit till it becomes a UNIX shell
o This is the heart of the last programming assignment
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Conclusion
• Processes
o An instance of a program in execution
o Shares CPU with other processes
o May also communicate with other processes

• System calls for creating processes
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

• System calls for inter-process communication
o Pipe: create a pipe with a write end and a read end
o Open/close: to open or close a file
o Dup2: to duplicate a file descriptor


