
1

1

Processes

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of Today’s Lecture
• Processes
o Process vs. program
o Context switching

• Creating a new process
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

• Communication between processes
o Pipe between two processes
o Redirecting stdin and stdout



2

3

Processes

4

Program vs. Process
• Program
o Executable code, no dynamic state

• Process
o An instance of a program in execution, with its own

– Address space (illusion of a memory)
• Text, RoData, BSS, heap, stack

– Processor state (illusion of a processor)
• EIP, EFLAGS, registers

– Open file descriptors (illusion of a disk)
o Either running, waiting, or ready…

• Can run multiple instances of the same program
o Each as its own process, with its own process ID



3

5

Life Cycle of a Process
• Running: instructions are being executed

• Waiting: waiting for some event (e.g., I/O finish) 

• Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting

6

OS Supports Process Abstraction
• Supporting the abstraction
o Multiple processes share resources
o Protected from each other

• Main memory
o Swapping pages to/from disk
o Virtual memory

• Processor
o Switching which process 

gets to run on the CPU
o Saving per-process state

on a “context switch” Hardware

Operating System

User
Process

User
Process



4

7

When to Change Which Process is Running?

• When a process is stalled waiting for I/O
o Better utilize the CPU, e.g., while waiting for disk access

• When a process has been running for a while
o Sharing on a fine time scale to give each process the 

illusion of running on its own machine
o Trade-off efficiency for a finer granularity of fairness

CPU CPU CPUI/O I/O I/O1:
CPU CPU CPUI/O I/O I/O2:

8

Switching Between Processes
• Context

o State the OS needs to 
restart a preempted 
process

• Context switch
o Saving the context of 

current process
o Restoring the saved 

context of some 
previously preempted 
process

o Passing control to this 
newly restored process

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningWaiting

Waiting

Waiting

Process 1 Process 2



5

9

Context: What the OS Needs to Save
• Process state 

o New, ready, waiting, halted

• CPU registers 
o EIP, EFLAGS, EAX, EBX, …

• I/O status information 
o Open files, I/O requests, …

• Memory management information 
o Page tables

• Accounting information
o Time limits, group ID, ...

• CPU scheduling information 
o Priority, queues

10

Creating a New Process



6

11

Why Start a New Process?
• Run a new program
o E.g., shell executing a program entered at command line
o Or, even running an entire pipeline of commands
o Such as “wc –l * | sort | uniq -c | sort –nr”

• Run a new thread of control for the same program
o E.g., a Web server handling a new Web request
o While continuing to allow more requests to arrive
o Essentially time sharing the computer

• Underlying mechanism
o A process runs “fork” to create a child process
o (Optionally) child process does “exec” of a new program

12

Creating a New Process

• Cloning an existing process
o Parent process creates a new child process
o The two processes then run concurrently 

• Child process inherits state from parent 
o Identical (but separate) copy of virtual 

address space
o Copy of the parent’s open file descriptors
o Parent and child share access to open files

• Child then runs independently
o Executing independently, including invoking a 

new program
o Reading and writing its own address space

parent

child



7

13

Fork System Call
• Fork is called once
o But returns twice, once in each process

• Telling which process is which 
o Parent: fork() returns the child’s process ID
o Child: fork() returns a 0

pid = fork();
if (pid != 0) {

/* in parent */
…

} else {
/* in child */
…

}

14

Fork and Process State
• Inherited
o User and group IDs
o Signal handling settings
o Stdio
o File pointers
o Root directory
o File mode creation mask
o Resource limits
o Controlling terminal
o All machine register 

states
o Control register(s)
o …

• Separate in child
o Process ID
o Address space 

(memory)
o File descriptors
o Parent process ID
o Pending signals
o Time signal reset times
o …



8

15

Example: What Output?

int main()
{ 

pid_t pid;
int x = 1;

pid = fork();
if (pid != 0) {
printf(“parent: x = %d\n”, --x);
exit(0);

} else {
printf(“child: x = %d\n”, ++x);
exit(0);

}
}

16

Executing a New Program
• Fork copies the state of the parent process
o Child continues running the parent program
o … with a copy of the process memory and registers

• Need a way to invoke a new program
o In the context of the newly-created child process

• Example

execlp(“ls”, “ls”, “-l”, NULL);
fprintf(stderr, “exec failed\n”);
exit(1);

program null-terminated list of arguments
(to become “argv[]”)



9

17

Waiting for the Child to Finish
• Parent may want to wait for children to finish
o Example: a shell waiting for operations to complete

• Waiting for any some child to terminate: wait()
o Blocks until some child terminates
o Returns the process ID of the child process
o Or returns -1 if no children exist (i.e., already exited)

• Waiting for a specific child to terminate: waitpid()
o Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

18

Example: A Simple Shell
• Shell is the parent process
o E.g., bash

• Parses command line
o E.g., “ls –l”

• Invokes child process
o Fork, execvp

• Waits for child
o Wait

fork

ls

waitexecvp

bash



10

19

Example: A Simple Shell
… parse command line …

pid = fork();

if (pid == -1)

fprintf(stderr, “fork failed\n”);

else if (pid == 0) {

/* in child */

execvp(file, argv);

fprintf(stderr, “exec failed\n”);

} else {

/* in parent */

pid = wait(&status);

}

… return to top of loop

20

Combined Fork/Exec/Wait
• Common combination of operations
o Fork to create a new child process
o Exec to invoke new program in child process
o Wait in the parent process for the child to complete

• Single call that combines all three
o int system(const char *cmd);

• Example

int main()
{

system(“echo Hello world”);
}



11

21

Communication Between Processes

22

Communication Between Processes

different machines

same machine



12

23

Interprocess Communication
• Pipes
o Processes on the same machine
o One process spawns the other
o Used mostly for a pipeline of filters

• Sockets
o Processes on any machines
o Processes created independently
o Used for client/server communication (e.g., Web)

Both provide abstraction of an “ordered stream of bytes.”

24

Pipes



13

25

Example Use of Pipes
• Compute a histogram of content types in my e-mail
o Many e-mail messages, consisting of many lines
o Lines like “Content-Type: image/jpeg” indicate the type

• Pipeline of UNIX commands
o Identifying content type: grep -i Content-Type *
o Extracting just the type: cut -d" " -f2
o Sorting the list of types: sort
o Counting the unique types: uniq -c
o Sorting the counts: sort –nr

• Simply running this at the shell prompt:
o grep -i Content-Type * | cut -d" " -f2 | sort | 
uniq -c | sort –nr

26

Creating a Pipe



14

27

Pipe Example

child

parent

28

Dup

a.out < foo



15

29

Dup2

30

Pipes and Stdio

child makes stdin (0)
the read side of the pipe

parent makes stdout (1)
the write side of the pipe



16

31

Pipes and Exec

child process

invokes a new program

32

The Beginnings of a UNIX Shell
• A shell is mostly a big loop

o Parse command line from stdin
o Expand wildcards (‘*’)
o Interpret redirections (‘|’, ‘<‘, and ‘>’)
o Pipe, fork, dup, exec, and wait, as necessary

• Start from the code in earlier slides
o And edit till it becomes a UNIX shell
o This is the heart of the last programming assignment



17

33

Conclusion
• Processes
o An instance of a program in execution
o Shares CPU with other processes
o May also communicate with other processes

• System calls for creating processes
o Fork: process creates a new child process
o Wait: parent waits for child process to complete
o Exec: child starts running a new program
o System: combines fork, wait, and exec all in one

• System calls for inter-process communication
o Pipe: create a pipe with a write end and a read end
o Open/close: to open or close a file
o Dup2: to duplicate a file descriptor


