
1

1

Optimizing Malloc and Free

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of This Lecture
• Brief review of K&R implementation

o Circular linked list of free blocks, with pointer and size in header
– Malloc: first-fit algorithm, with splitting
– Free: coalescing with adjacent blocks, if they are free

o Limitations
– Fragmentation of memory due to first-fit strategy
– Linear time to scan the list during malloc and free

• Optimizations related to assignment #6
o Placement choice, splitting, and coalescing
o Faster free

– Size information in both header and footer
– Next and previous free-list pointers in header and footer

o Faster malloc
– Separate free list for free blocks of different sizes
– One bin per block size, or one bin for a range of sizes

2

3

Free Block: Pointer, Size, Data
• Free block in memory
o Pointer to the next block
o Size of the block
o User data

p (address returned to the user)

user datasize

header

4

Free List: Circular Linked List
• Free blocks, linked together
o Example: circular linked list

• Keep list in order of increasing addresses
o Makes it easier to coalesce adjacent free blocks

In
use

In
use

In
use

Free list

3

5

Malloc: First-Fit Algorithm
• Start at the beginning of the list

• Sequence through the list
o Keep a pointer to the previous element

• Stop when reaching first block that is big enough
o Patch up the list
o Return a pointer to the user

p pprev pprev

6

Malloc: First Case, A Perfect Fit
• Suppose the first fit is a perfect fit
o Remove the block from the list
o Link the previous free block with the next free block
o Return the current to the user (skipping header)

pprev
p+1

4

7

Malloc: Second Case: Big Block
• Suppose the block is bigger than requested
o Divide the free block into two blocks
o Keep first (now smaller) block in the free list
o Allocate the second block to the user

p p

8

Free
• User passes a pointer to the memory block
o void free(void *ap);

• Free function inserts block into the list
o Identify the start of entry
o Find the location in the free list
o Add to the list, coalescing entries, if needed

apbp

5

9

Free: Finding Location to Insert
• Start at the beginning

• Sequence through the list

• Stop at last entry before the to-be-freed element

In
use

FREE
ME

In
use

Free list
bpp

10

Free: Handling Corner Cases
• Check for wrap-around in memory
o To-be-freed block is before first entry in the free list, or
o To-be-freed block is after the last entry in the free list

In
use

FREE
ME

In
use

Free list
bp p

6

11

Free: Inserting Into Free List
• New element to add to free list

• Insert in between previous and next entries

• But, there may be opportunities to coalesce

bp

p p->s.ptr

12

Coalescing With Neighbors
• Scanning the list finds the location for inserting
o Pointer to to-be-freed element: bp
o Pointer to previous element in free list: p

• Coalescing into larger free blocks
o Check if contiguous to upper and lower neighbors

In
use

FREE
ME

In
use

Free list
bpp

lower upper

7

13

Coalesce With Upper Neighbor
• Check if next part of memory is in the free list
• If so, make into one bigger block

• Else, simply point to the next free element
bp

upper

p p->s.ptr

p p->s.ptr

14

Coalesce With Lower Neighbor
• Check if previous part of memory is in the free list

• If so, make into one bigger block

bpp

lower

p->s.ptr

p p->s.ptr

8

15

Strengths of K&R Malloc and Free
• Advantages

o Simplicity of the code

• Optimizations to malloc()
o Splitting large free block to

avoid wasting space

• Optimization to free()
o Roving free-list pointer is

left at the last place a block
was allocated

o Coalescing contiguous
free blocks to reduce
fragmentation

p

bp

upper

p p->s.ptr

16

Weaknesses of K&R Malloc and Free
• Inefficient use of memory: fragmentation

o Best-fit policy can leave lots of “holes” of free blocks in memory

• Long execution times: linear-time overhead
o Malloc scans the free list to find a big-enough block
o Free scans the free list to find where to insert a block

• Accessing a wide range of memory addresses in free list
o Can lead to large amount of paging to/from the disk

In
use

In
use

In
use

Free list

20 8 50

9

17

Improvements: Placement
• Placement: reducing fragmentation

o Deciding which free block to use to satisfy a malloc() request
o K&R uses “first fit” (really, “next fit”)

– Example: malloc(8) would choose the 20-byte block
o Alternative: “best fit” or “good fit” to avoid wasting space

– Example: malloc(8) would choose the 8-byte block

In
use

In
use

In
use

Free list

20 8 50

18

Improvements: Splitting
• Splitting: avoiding wasted memory

o Subdividing a large free block, and giving part to the user
o K&R malloc() does splitting whenever the free block is too big

– Example: malloc(14) splits the 20-byte block
o Alternative: selective splitting, only when the savings is big enough

– Example: malloc(14) allocates the entire 20-byte block

In
use

In
use

In
use

Free list

8 5020

10

19

Improvements: Coalescing
• Coalescing: reducing fragmentation

o Combining contiguous free blocks into a larger free blocks
o K&R does coalescing in free() whenever possible

– Example: combine free block with lower and upper neighbors
o Alternative: deferred coalescing, done only intermittently

– Example: wait, and coalesce many blocks at a time later

In
use

FREE
ME

In
use

Free list
bpp

lower upper

20

Improvements: Faster Free
• Performance problems with K&R free()
o Scanning the free list to know where to insert
o Keeping track of the “previous” node to do the insertion

• Doubly-linked, non-circular list
o Header

– Size of the block (in # of units)
– Flag indicating whether the block is free or in use
– If free, a pointer to the next free block

o Footer
– Size of the block (in # of units)
– If free, a pointer to the previous free block

h
e
a
d

f
o
o
t

11

21

Size: Finding Next Block
• Go quickly to next block in memory
o Start with the user’s data portion of the block
o Go backwards to the head of the block

– Easy, since you know the size of the header
o Go forward to the head of the next block

– Easy, since you know the size of the current block

22

Size: Finding Previous Block
• Go quickly to previous chunk in memory
o Start with the user’s data portion of the block
o Go backwards to the head of the block

– Easy, since you know the size of the header
o Go backwards to the footer of the previous block

– Easy, since you know the size of the footer
o Go backwards to the header of the previous block

– Easy, since you know the size from the footer

12

23

Pointers: Next Free Block
• Go quickly to next free block in memory
o Start with the user’s data portion of the block
o Go backwards to the head of the block

– Easy, since you know the size of the header
o Go forwards to the next free block

– Easy, since you have the next free pointer

24

Pointers: Previous Free Block
• Go quickly to previous free block in memory
o Start with the user’s data portion of the block
o Go backwards to the head of the block

– Easy, since you know the size of the header
o Go forwards to the footer of the block

– Easy, since you know the block size from the header
o Go backwards to the previous free block

– Easy, since you have the previous free pointer

13

25

Efficient Free
• Before: K&R
o Scan the free list till you find the place to insert

– Needed to see if you can coalesce adjacent blocks
o Expensive for loop with several pointer comparisons

• After: with header/footer and doubly-linked list
o Coalescing with the previous block in memory

– Check if previous block in memory is also free
– If so, coalesce

o Coalescing with the next block in memory the same way
o Add the new, larger block to the front of the linked list

26

But Malloc is Still Slow…
• Still need to scan the free list
o To find the first, or best, block that fits

• Root of the problem
o Free blocks have a wide range of sizes

• Solution: binning
o Separate free lists by block size
o Implemented as an array of free-list pointers

14

27

Binning Strategies: Exact Fit
• Have a bin for each block size, up to a limit
o Advantages: no search for requests up to that size
o Disadvantages: many bins, each storing a pointer

• Except for a final bin for all larger free blocks
o For allocating larger amounts of memory
o For splitting to create smaller blocks, when needed

1
2
3
4

> 4

1 1 1

3 3

5 8

28

Binning Strategies: Range
• Have a bin cover a range of sizes, up to a limit
o Advantages: fewer bins
o Disadvantages: need to search for a big enough block

• Except for a final bin for all larger free chunks
o For allocating larger amounts of memory
o For splitting to create smaller blocks, when needed

1-2
3-4
5-6
7-8
> 8

1 2 1

6 5

10 14

15

29

Suggestions for Assignment #6
• Debugging memory management code is hard

o A bug in your code might stomp on the headers or footers
o … making it very hard to understand where you are in memory

• Suggestion: debug carefully as you go along
o Write little bits of code at a time, and test as you go
o Use assertion checks very liberally to catch mistakes early
o Use functions to apply higher-level checks on your list

– E.g,. all free-list blocks are marked as free
– E.g., each block pointer is within the heap range
– E.g., the block size in header and footer are the same

• Suggestion: draw lots and lots of pictures

30

Conclusions
• K&R malloc and free have limitations
o Fragmentation of the free space

– Due to the first-first strategy
o Linear time for malloc and free

– Due to the need to scan the free list

• Optimizations
o Faster free

– Headers and footers
– Size information and doubly-linked free list

o Faster malloc
– Multiple free lists, one per size (or range of sizes)

16

31

Backup Slides

32

Stupid Programmer Tricks
• Inside the malloc library

if (size < 32)

size = 32;

else if (size > 2048)

size = 4096 * ((size+4095)/4096);

else if (size & (size-1)) {

find next larger power-of-two

}

17

33

Stupid Programmer Tricks
• Inside the malloc library

• Why 4096?
o Use mmap() instead of sbrk()

• Mmap (memory map) – originally intended to “map” a file
into virtual address space
o Often better than malloc+read. Why?
o If no file specified, mapping becomes “anonymous” – temporary
o Map/unmap at finer granularity (within reason)
o Recycling – unmapped pages might get used by next sbrk()

