
1

1

Dynamic Memory Management

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of Today’s Lecture
• Dynamic memory management
o Garbage collection by the run-time system (Java)
o Manual deallocation by the programmer (C, C++)

• Challenges of manual deallocation
o Arbitrary request sizes in an arbitrary order
o Complex evolution of heap as a program runs

• Design decisions for the “K&R” implementation
o Circular linked-list of free blocks with a “first fit” allocation
o Coalescing of adjacent blocks to create larger blocks

2

3

Memory Layout: Heap

char* string = “hello”;
int iSize;

char* f()
{

char* p;
scanf(“%d”, &iSize);
p = malloc(iSize);
return p;

}

Text

BSS

Stack

Heap

Needed when required memory size is
not known before the program runs

RoData

Data

4

Allocating & Deallocating Memory
• Dynamically allocating memory
o Programmer explicitly requests space in memory
o Space is allocated dynamically on the heap
o E.g., using “malloc” in C, and “new” in Java

• Dynamically deallocating memory
o Must reclaim or recycle memory that is never used again
o To avoid (eventually) running out of memory

• “Garbage”
o Allocated block in heap that will not be accessed again
o Can be reclaimed for later use by the program

3

5

Option #1: Garbage Collection
• Run-time system does garbage collection (Java)
o Automatically determines objects that can’t be accessed
o And then reclaims the resources used by these objects

Object x = new Foo();
Object y = new Bar();
x = new Quux();

if (x.check_something()) {
x.do_something(y);

}
System.exit(0);

Object Foo()
is never used

again!

6

Challenges of Garbage Collection
• Detecting the garbage is not always easy
o “if (complex_function(y)) x = Quux();”
o Run-time system cannot collect all of the garbage

• Detecting the garbage introduces overhead
o Keeping track of references to objects (e.g., counter)
o Scanning through accessible objects to identify garbage
o Sometimes walking through a large amount of memory

• Cleaning the garbage leads to bursty delays
o E.g., periodic scans of the objects to hunt for garbage
o Leading to unpredictable “freeze” of the running program
o Very problematic for real-time applications
o … though good run-time systems avoid long freezes

4

7

Option #2: Manual Deallocation
• Programmer deallocates the memory (C and C++)
o Manually determines which objects can’t be accessed
o And then explicitly returns the resources to the heap
o E.g., using “free” in C or “delete” in C++

• Advantages
o Lower overhead
o No unexpected “pauses”
o More efficient use of memory

• Disadvantages
o More complex for the programmer
o Subtle memory-related bugs
o Security vulnerabilities in the (buggy) code

8

Manual Deallocation Can Lead to Bugs

• Dangling pointers
o Programmer frees a region of memory
o … but still has a pointer to it
o Dereferencing pointer reads or writes nonsense values

int main(void) {
char *p;
p = malloc(10);
…
free(p);
…
putchar(*p);

}

May print
nonsense
character.

5

9

Manual Deallocation Can Lead to Bugs

• Memory leak
o Programmer neglects to free unused region of memory
o So, the space can never be allocated again
o Eventually may consume all of the available memory

void f(void) {
char *s;
s = malloc(50);
return;

}

int main(void) {
while (1) f();
return 0;

}

Eventually,
malloc()

returns NULL

10

Manual Deallocation Can Lead to Bugs

• Double free
o Programmer mistakenly frees a region more than once
o Leading to corruption of the heap data structure
o … or premature destruction of a different object

int main(void) {
char *p, *q;
p = malloc(10);
…
free(p);
q = malloc(10);
free(p);
…

}

Might free the
space allocated

to q!

6

11

Challenges for Malloc and Free
• Malloc() may ask for an arbitrary number of bytes

• Memory may be allocated & freed in different order

• Cannot reorder requests to improve performance
char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

12

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

7

13

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2

14

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

8

15

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

16

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4

9

17

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4

18

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

10

19

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

20

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

11

21

Heap: Dynamic Memory
#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

22

Goals for Malloc and Free
• Maximizing throughput
o Maximize number of requests completed per unit time
o Need both malloc() and free() to be fast

• Maximizing memory utilization
o Minimize the amount of wasted memory
o Need to minimize size of data structures

• Strawman #1: free() does nothing
o Good throughput, but poor memory utilization

• Strawman #2: malloc() finds the “best fit”
o Good memory utilization, but poor throughput

12

23

Keeping Track of Free Blocks
• Maintain a collection of free blocks of memory
o Allocate memory from one of the blocks in the free list
o Deallocate memory by returning the block to the free list
o Ask the OS for additional block when more are needed

• Design questions
o How to keep track of the free blocks in memory?
o How to choose an appropriate free block to allocate?
o What to do with the left-over space in a free block?
o What to do with a block that has just been freed?

free free free

24

Need to Minimize Fragmentation
• Internal fragmentation
o Allocated block is larger than malloc() requested
o E.g., malloc() imposes a minimum size (e.g., 64 bytes)

• External fragmentation
o Enough free memory exists, but no block is big enough
o E.g., malloc() asks for 128 contiguous bytes

64 64 64

33

13

25

Simple “K&R-Like” Approach
• Memory allocated in multiples of a base size

o E.g., 16 bytes, 32 bytes, 48 bytes, …

• Linked list of free blocks
o Malloc() and free() walk through the list to allocate and deallocate

• Malloc() allocates the first big-enough block
o To avoid sequencing further through the list

• Malloc() splits the free block
o To allocate what is needed, and leave the rest available

• Linked list is circular
o To be able to continue where you left off

• Linked list in the order the blocks appear in memory
o To be able to “coalesce” neighboring free blocks

26

Allocate Memory in Multiples of Base Size

• Allocate memory in multiples of a base size
o To avoid maintaining very tiny free blocks
o To align memory on size of largest data type (e.g., long)

• Requested size is “rounded up”
o Allocation in units of base_size
o Round:(nbytes + base_size – 1)/base_size

• Example:
o Suppose nbytes is 37
o And base_size is 16 bytes
o Then (37 + 16 – 1)/16 is 52/16 which rounds down to 3

16 16 5

14

27

Linked List of Free Blocks
• Linked list of free blocks

• Malloc() allocates a big-enough block

• Free() adds newly-freed block to the list

Allocated

Newly
freed

28

“First-Fit” Allocation
• Handling a request for memory (e.g., malloc)
o Find a free block that satisfies the request
o Must have a “size” that is big enough, or bigger

• Simplest approach: first fit
o Sequence through the linked list
o Stop upon encountering a “big enough” free block

• Example: request for 64 bytes
o First-fit algorithm stops at the 128-byte block

48 32 128 64 256

15

29

Splitting an Oversized Free Block
• Simple case: perfect fit
o Malloc() asks for 128 bytes, and free block has 128 bytes
o Simply remove the free block from the list

• Complex case: splitting the block
o Malloc() asks for 64 bytes, and free block has 128 bytes

48 32 128 64 256

48 32 64 25664

64

30

Circular Linked List of Free Blocks
• Advantages of making free list a circular list
o Any element in the list can be the beginning
o Don’t have to handle the “end” of the list as special

• Performance optimization
o Make the head be where last block was found
o More likely to find “big enough” blocks later in the list

48 32 64 25664

new head

16

31

Maintaining Free Blocks in Order
• Keep list in order of increasing addresses
o Makes it easier to coalesce adjacent free blocks

• Though, makes calls to free() more expensive
o Need to insert the newly-freed block in the right place

In
use

In
use

In
use

Free list

32

Coalescing Adjacent Free Blocks
• When inserting a block in the free list
o “Look left” and “look right” for neighboring free blocks

In
use

In
use

In
use

In
use

In
use

“Left” “Right”

17

33

An Implementation Challenge
• Need information about each free block
o Starting address of the block of memory
o Length of the free block
o Pointer to the next block in the free list

• Where should this information be stored?
o Number of free blocks is not known in advance
o So, need to store the information on the heap

• But, wait, this code is what manages the heap!!!
o Can’t call malloc() to allocate storage for this information
o Can’t call free() to relinquish the storage, either

34

Store Information in the Free Block
• Store the information directly in the free block
o Since the memory isn’t being used for anything anyway
o And allows data structure to grow and shrink as needed

• Every free block has a header
o Size of the free block
o Pointer to (i.e., address of) the next free block

• Challenge: programming outside the type system

size

18

35

Conclusions
• Elegant simplicity of K&R malloc and free
o Simple header with pointer and size in each free block
o Simple circular linked list of free blocks
o Relatively small amount of code (~25 lines each)

• Limitations of K&R functions in terms of efficiency
o Malloc requires scanning the free list

– To find the first free block that is big enough
o Free requires scanning the free list

– To find the location to insert the to-be-freed block

