
1

1

Assembly Language:
Function Calls

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of Today’s Lecture
• Challenges of supporting functions
o Providing information for the called function

– Function arguments and local variables
o Allowing the calling function to continue where it left off

– Return address and contents of registers

• Stack: last-in-first-out data structure
o Stack frame: args, local vars, return address, registers
o Stack pointer: pointing to the current top of the stack

• Calling functions
o Call and ret instructions, to call and return from functions
o Pushing and popping the stack frame
o Using the base pointer EBP as a reference point

2

3

Challenges of Supporting Functions

• Code with a well-defined entry and exit points
o Call: How does the CPU go to that entry point?
o Return: How does the CPU go back to the right place,

when “right place” depends on who called the function?

• With arguments and local variables
o How are the arguments passed from the caller?
o Where should the local variables be stored?

• Providing a return value
o How is the return value returned to the calling function?

• Without changing variables in other functions
o How are the values stored in registers protected?

4

Call and Return Abstractions
• Call a function
o Jump to the beginning of an arbitrary procedure
o I.e., jump to the address of the function’s first instruction

• Return from a function
o Jump to the instruction immediately following the “most-

recently-executed” Call instruction
o But, the same function may be called from many places!

P: # Function P

…

jmp R # Call R

Rtn_point1:

…

R: # Function R

…

jmp Rtn_point1 # Return

3

5

Challenge: Where to Return?
P: # Function P

…

jmp R # Call R

Rtn_point1:

…

Q: # Function Q

…

jmp R # Call R

Rtn_point2:

…

R: # Function R

…

jmp ??? # Return

What should the return
instruction in R jump to???

6

Store Return Address in Register?
P: # Proc P

movl $Rtn_point1, %eax

jmp R # Call R

Rtn_point1:

…

Q: # Proc Q

movl $Rtn_point2, %eax

jmp R # Call R

Rtn_point2:

…

R: # Proc R

…

jmp %eax # Return

Convention: At Call time,
store return address in EAX

4

7

Problem: Nested Function Calls
P: # Function P

movl $Rtn_point1, %eax

jmp Q # Call Q

Rtn_point1:

…

Q: # Function Q

movl $Rtn_point2, %eax

jmp R # Call R

Rtn_point2:

…

jmp %eax # Return

R: # Function R

…

jmp %eax # Return

• Problem if P calls Q, and
Q calls R

• Return address for P to Q
call is lost

8

Solution: Put Return Address on a Stack

• May need to store many return addresses
o The number of nested functions is not known in advance
o A return address must be saved for as long as the

function invocation continues

• Addresses used in reverse order
o E.g., function P calls Q, which then calls R
o Then R returns to Q which then returns to P

• Last-in-first-out data structure (stack)
o Calling function pushes return address on the stack
o … and called function pops return address off the stack

EIP for P
EIP for Q

5

9

Arguments to the Function
• Calling function needs to

pass arguments
o Cannot simply put arguments

in a specific register
o Because function calls may

be nested

• So, put the arguments on
the stack, too!
o Calling function pushes

arguments on the stack
o Called function loads/stores-

them on the stack

int add3(int a, int b, int c)
{
int d;

d = a + b + c;

return d;
}

int foo(void)
{
return add3(3, 4, 5);

}

10

Local Variables
• Local variables: called

function has local variables
o Short-lived, so don’t need a

permanent location in memory
o Size known in advance, so don’t

need to allocate on the heap

• So, the function just uses the
top of the stack
o Store local variables on the top

of the stack
o The local variables disappear

after the function returns

int add3(int a, int b, int c)
{
int d;

d = a + b + c;

return d;
}

int foo(void)
{
return add3(3, 4, 5);

}

6

11

Registers
• Registers
o Small, fast memory (e.g., directly on the CPU chip)
o Used as temporary storage for computations

• Cannot have separate registers per function
o Could have arbitrary number of nested functions
o Want to allow each function to use all the registers

• Could write all registers out to memory
o E.g., save values corresponding to program variables

– Possible, but a bit of a pain…
o E.g., find someplace to stash intermediate results

– Where would we put them?

• Instead, save the registers on the stack, too

12

Stack Frames
• Use stack for all temporary data related to each active

function invocation

o Return address
o Input parameters
o Local variables of function
o Saving registers across invocations

• Stack has one Stack Frame per active function invocation

Stack Frame

7

13

High-Level Picture
main begins executing

main’s

Stack Frame

0

Bottom

%ESP

14

High-Level Picture
main begins executing

main calls P

main’s

Stack Frame

P’s

Stack Frame

0

Bottom

%ESP

8

15

High-Level Picture
main begins executing

main calls P

P calls Q

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP

16

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

main’s

Stack Frame

P’s

Stack Frame

P’s

Stack Frame
Q’s

Stack Frame

0

Bottom

%ESP

9

17

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP

18

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

main’s

Stack Frame

P’s

Stack Frame

R’s

Stack Frame
Q’s

Stack Frame

0

Bottom

%ESP

10

19

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP

20

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

main’s

Stack Frame

P’s

Stack Frame

0

Bottom

%ESP

11

21

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

P returns

main’s

Stack Frame

0

Bottom

%ESP

22

High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

P returns

main returns

0

Bottom

12

23

Function Call Details
• Call and Return instructions
o Call: push EIP on the stack, and jump to function
o Return: pop the stack into the EIP to go back

• Argument passing between procedures
o Calling function pushes arguments on to the stack
o Called function reads/writes on the stack

• Local variables
o Called function creates and manipulates on the stack

• Register saving conventions
o Either calling or called function saves all of the registers

before use

24

Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

Effective OperationsInstruction

%ESP
before Call

0

Note: can’t really access EIP
directly, but this is implicitly
what call and ret are doing.

13

25

Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP
after Call Old EIP

0

26

Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP
before
Return

Old EIP

0

Return instruction assumes that
the return address is at the top of
the stack

14

27

Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP
after

Return

0

Return instruction assumes that
the return address is at the top of
the stack

28

Input Parameters

%ESP
before

pushing
arguments

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at the top of

the stack at the time of the Call

15

29

Input Parameters

%ESP
before

Call

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

Arg N

Arg 1

Arg …

30

Input Parameters

%ESP
after Call

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

Arg N

Arg 1

Arg …

Old EIP

Called function can address arguments
relative to ESP: Arg 1 as 4(%esp)

Why is the EIP put on after the arguments?

16

31

Input Parameters

%ESP
before
Return

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

Arg N

Arg 1

Arg …

Old EIP

32

Input Parameters

%ESP
after

Return

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

Arg N

Arg 1

Arg …

After the function call is finished,
the caller pops the pushed
arguments from the stack

17

33

Input Parameters

%ESP
after

popping
arguments

0• Caller pushes input parameters
before executing the Call instruction

• Parameters are pushed in the
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

After the function call is finished,
the caller pops the pushed
arguments from the stack

34

Base Pointer: EBP

%ESP
after Call

0
• As Callee executes, ESP may change

o E.g., preparing to call another function

• Use EBP as fixed reference point
o E.g., to access arguments and

other local variables

• Need to save old value of EBP
o Before overwriting EBP register

• Callee begins by executing “prolog”
pushl %ebp

movl %esp, %ebp

Arg N

Arg 1

Arg …

Old EIP

%EBP

18

35

Base Pointer: EBP

%ESP,
%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• As Callee executes, ESP may change
o E.g., preparing to call another function

• Use EBP as fixed reference point
o E.g., to access arguments and

other local variables

• Need to save old value of EBP
o Before overwriting EBP register

• Callee begins by executing “epilog”
pushl %ebp

movl %esp, %ebp

• Regardless of ESP, Callee can
address Arg 1 as 8(%ebp)

36

Base Pointer: EBP

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Before returning, Callee must
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%ESP

19

37

Base Pointer: EBP

%ESP,
%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Before returning, Callee must
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

38

Base Pointer: EBP

%ESP

0

Arg N

Arg 1

Arg …

Old EIP

• Before returning, Callee must
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%EBP

20

39

Base Pointer: EBP

%ESP

0

Arg N

Arg 1

Arg …

• Before returning, Callee must
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%EBP

40

Allocation for Local Variables

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Local variables of the Callee
are also allocated on the stack

• Allocation done by moving the
stack pointer

• Example: allocate two integers
o subl $4, %esp
o subl $4, %esp
o (or equivalently, subl $8, %esp)

• Reference local variables
using the base pointer
o -4(%ebp)
o -8(%ebp)

%ESP

Var 1

Var 2

21

41

Use of Registers
• Problem: Called function may use a register that

the calling function is also using
o When called function returns control to calling function,

old register contents may be lost
o Calling function cannot continue where it left off

• Solution: save the registers on the stack
o Someone must save old register contents
o Someone must later restore the register contents

• Need a convention for who saves and restores
which registers

42

GCC/Linux Convention

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Caller-save registers
o %eax, %edx, %ecx
o Save on stack (if necessary)

prior to calling

• Callee-save registers
o %ebx, %esi, %edi
o Old values saved on stack prior

to using, and restored later

• %esp, %ebp handled as
described earlier

• Return value is passed from
Callee to Caller in %eax

%ESP

Var 1

Var 2

Saved

Registers

Saved

Registers

22

43

A Simple Example

int add3(int a, int b, int c)
{

int d;

d = a + b + c;

return d;
}

int foo(void)
{

return add3(3, 4, 5);
}

44

A Simple Example
int add3(int a, int b, int c){

int d;
d = a + b + c;
return d;

}

In general, one may need to push
callee-save registers onto the stack

Add the three arguments
movl 8(%ebp), %eax
addl 12(%ebp), %eax
addl 16(%ebp), %eax

Put the sum into d
movl %eax, -4(%ebp)

Return value is already in eax

In general, one may need to pop
callee-save registers

Restore old ebp, discard stack frame
movl %ebp, %esp
popl %ebp

Return
ret

add3:
Save old ebp and set up new ebp
pushl %ebp
movl %esp, %ebp

Allocate space for d
subl $4, $esp

%EBP

Arg c

Arg a
Arg b

old EIP
old EBP

%ESP
Var d

23

45

A Simple Example
No need to save caller-
save registers either

Push arguments in reverse order
pushl $5
pushl $4
pushl $3

call add3

Pop arguments from the stack
addl $12, %esp

Return value is already in eax

Restore old ebp and
discard stack frame
movl %ebp, %esp
popl %ebp

Return
ret

foo:
Save old ebp, and set-up
new ebp
pushl %ebp
movl %esp, %ebp

No local variables

No need to save callee-save
registers as we
don’t use any registers

int foo(void) {
return add3(3, 4, 5);

}

%EBP

Arg c

Arg a
Arg b

old EIP

%ESP

46

Conclusion
• Invoking a function
o Call: call the function
o Ret: return from the instruction

• Stack Frame for a function invocation includes
o Return address,
o Procedure arguments,
o Local variables, and
o Saved registers

• Base pointer EBP
o Fixed reference point in the Stack Frame
o Useful for referencing arguments and local variables

