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Assembly Language: 
Function Calls

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex
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Goals of Today’s Lecture
• Challenges of supporting functions
o Providing information for the called function

– Function arguments and local variables
o Allowing the calling function to continue where it left off

– Return address and contents of registers

• Stack: last-in-first-out data structure
o Stack frame: args, local vars, return address, registers
o Stack pointer: pointing to the current top of the stack

• Calling functions
o Call and ret instructions, to call and return from functions
o Pushing and popping the stack frame
o Using the base pointer EBP as a reference point
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Challenges of Supporting Functions

• Code with a well-defined entry and exit points
o Call: How does the CPU go to that entry point?
o Return: How does the CPU go back to the right place, 

when “right place” depends on who called the function?

• With arguments and local variables
o How are the arguments passed from the caller?
o Where should the local variables be stored?

• Providing a return value
o How is the return value returned to the calling function?

• Without changing variables in other functions
o How are the values stored in registers protected?

4

Call and Return Abstractions
• Call a function
o Jump to the beginning of an arbitrary procedure
o I.e., jump to the address of the function’s first instruction 

• Return from a function
o Jump to the instruction immediately following the “most-

recently-executed” Call instruction
o But, the same function may be called from many places!

P: # Function P

…

jmp R # Call R

Rtn_point1:

…

R: # Function R

…

jmp Rtn_point1 # Return
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Challenge: Where to Return?
P: # Function P

…

jmp R # Call R

Rtn_point1:

…

Q: # Function Q

…

jmp R # Call R

Rtn_point2:

…

R: # Function R

…

jmp ??? # Return

What should the return 
instruction in R jump to???
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Store Return Address in Register?
P: # Proc P

movl $Rtn_point1, %eax

jmp R # Call R

Rtn_point1:

…

Q: # Proc Q

movl $Rtn_point2, %eax

jmp R # Call R

Rtn_point2:

…

R: # Proc R

…

jmp %eax # Return

Convention: At Call time, 
store return address in EAX
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Problem: Nested Function Calls
P: # Function P

movl $Rtn_point1, %eax

jmp Q # Call Q

Rtn_point1:

…

Q: # Function Q

movl $Rtn_point2, %eax

jmp R # Call R

Rtn_point2:

…

jmp %eax # Return

R: # Function R

…

jmp %eax # Return

• Problem if P calls Q, and 
Q calls R

• Return address for P to Q 
call is lost

8

Solution: Put Return Address on a Stack

• May need to store many return addresses
o The number of nested functions is not known in advance
o A return address must be saved for as long as the 

function invocation continues

• Addresses used in reverse order 
o E.g., function P calls Q, which then calls R
o Then R returns to Q which then returns to P

• Last-in-first-out data structure (stack)
o Calling function pushes return address on the stack
o … and called function pops return address off the stack

EIP for P
EIP for Q
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Arguments to the Function
• Calling function needs to 

pass arguments
o Cannot simply put arguments 

in a specific register
o Because function calls may 

be nested

• So, put the arguments on 
the stack, too!
o Calling function pushes 

arguments on the stack
o Called function loads/stores-

them on the stack

int add3(int a, int b, int c)
{
int d;

d = a + b + c;

return d;
}

int foo(void)
{
return add3(3, 4, 5);

}
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Local Variables
• Local variables: called 

function has local variables
o Short-lived, so don’t need a 

permanent location in memory
o Size known in advance, so don’t 

need to allocate on the heap

• So, the function just uses the 
top of the stack
o Store local variables on the top 

of the stack
o The local variables disappear 

after the function returns

int add3(int a, int b, int c)
{
int d;

d = a + b + c;

return d;
}

int foo(void)
{
return add3(3, 4, 5);

}
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Registers
• Registers
o Small, fast memory (e.g., directly on the CPU chip)
o Used as temporary storage for computations

• Cannot have separate registers per function
o Could have arbitrary number of nested functions
o Want to allow each function to use all the registers

• Could write all registers out to memory
o E.g., save values corresponding to program variables

– Possible, but a bit of a pain…
o E.g., find someplace to stash intermediate results

– Where would we put them?

• Instead, save the registers on the stack, too
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Stack Frames
• Use stack for all temporary data related to each active 

function invocation

o Return address
o Input parameters
o Local variables of function
o Saving registers across invocations

• Stack has one Stack Frame per active function invocation

Stack Frame
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High-Level Picture
main begins executing

main’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

main’s

Stack Frame

P’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

main’s

Stack Frame

P’s

Stack Frame

P’s

Stack Frame
Q’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

main’s

Stack Frame

P’s

Stack Frame

R’s

Stack Frame
Q’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

main’s

Stack Frame

P’s

Stack Frame

Q’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

main’s

Stack Frame

P’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

P returns

main’s

Stack Frame

0

Bottom

%ESP
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High-Level Picture
main begins executing

main calls P

P calls Q

Q calls P

P returns

Q calls R

R returns

Q returns

P returns

main returns

0

Bottom
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Function Call Details
• Call and Return instructions
o Call: push EIP on the stack, and jump to function
o Return: pop the stack into the EIP to go back

• Argument passing between procedures
o Calling function pushes arguments on to the stack
o Called function reads/writes on the stack

• Local variables
o Called function creates and manipulates on the stack

• Register saving conventions
o Either calling or called function saves all of the registers 

before use
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Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

Effective OperationsInstruction

%ESP 
before Call

0

Note: can’t really access EIP 
directly, but this is implicitly 
what call and ret are doing.
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Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP 
after Call Old EIP

0
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Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP 
before 
Return

Old EIP

0

Return instruction assumes that 
the return address is at the top of 
the stack
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Call and Return Instructions

movl (%esp), dest

addl $4, %esp

popl dest

subl $4, %esp

movl src, (%esp)

pushl src

pop %eipret

pushl %eip
jmp addr

call addr

OperationInstruction

%ESP 
after 

Return

0

Return instruction assumes that 
the return address is at the top of 
the stack
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Input Parameters

%ESP 
before 

pushing 
arguments

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at the top of 

the stack at the time of the Call
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Input Parameters

%ESP 
before 

Call

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of 

the stack at the time of the Call

Arg N

Arg 1

Arg …
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Input Parameters

%ESP 
after Call

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of 

the stack at the time of the Call

Arg N

Arg 1

Arg …

Old EIP

Called function can address arguments 
relative to ESP: Arg 1 as 4(%esp)

Why is the EIP put on after the arguments?
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Input Parameters

%ESP 
before 
Return

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of 

the stack at the time of the Call

Arg N

Arg 1

Arg …

Old EIP
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Input Parameters

%ESP 
after 

Return

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of 

the stack at the time of the Call

Arg N

Arg 1

Arg …

After the function call is finished, 
the caller pops the pushed 
arguments from the stack
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Input Parameters

%ESP 
after 

popping 
arguments

0• Caller pushes input parameters 
before executing the Call instruction

• Parameters are pushed in the 
reverse order
o Push Nth argument first
o Push 1st argument last
o So that first argument is at top of

the stack at the time of the Call

After the function call is finished, 
the caller pops the pushed 
arguments from the stack
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Base Pointer: EBP

%ESP 
after Call

0
• As Callee executes, ESP may change

o E.g., preparing to call another function

• Use EBP as fixed reference point
o E.g., to access arguments and 

other local variables

• Need to save old value of EBP
o Before overwriting EBP register

• Callee begins by executing “prolog”
pushl %ebp

movl %esp, %ebp

Arg N

Arg 1

Arg …

Old EIP

%EBP



18

35

Base Pointer: EBP

%ESP, 
%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• As Callee executes, ESP may change
o E.g., preparing to call another function

• Use EBP as fixed reference point
o E.g., to access arguments and 

other local variables

• Need to save old value of EBP
o Before overwriting EBP register

• Callee begins by executing “epilog”
pushl %ebp

movl %esp, %ebp

• Regardless of ESP, Callee can 
address Arg 1 as 8(%ebp)
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Base Pointer: EBP

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Before returning, Callee must 
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%ESP
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Base Pointer: EBP

%ESP, 
%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Before returning, Callee must 
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret
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Base Pointer: EBP

%ESP

0

Arg N

Arg 1

Arg …

Old EIP

• Before returning, Callee must 
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%EBP
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Base Pointer: EBP

%ESP

0

Arg N

Arg 1

Arg …

• Before returning, Callee must 
restore EBP to its old value

• Executes
movl %ebp, %esp

popl %ebp

ret

%EBP
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Allocation for Local Variables

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Local variables of the Callee 
are also allocated on the stack

• Allocation done by moving the 
stack pointer

• Example: allocate two integers
o subl $4, %esp
o subl $4, %esp
o (or equivalently, subl $8, %esp)

• Reference local variables 
using the base pointer
o -4(%ebp)
o -8(%ebp)

%ESP

Var 1

Var 2
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Use of Registers
• Problem: Called function may use a register that 

the calling function is also using
o When called function returns control to calling function, 

old register contents may be lost
o Calling function cannot continue where it left off

• Solution: save the registers on the stack
o Someone must save old register contents 
o Someone must later restore the register contents

• Need a convention for who saves and restores 
which registers
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GCC/Linux Convention

%EBP

0

Arg N

Arg 1

Arg …

Old EIP

Old EBP

• Caller-save registers
o %eax, %edx, %ecx
o Save on stack (if necessary) 

prior to calling

• Callee-save registers
o %ebx, %esi, %edi
o Old values saved on stack prior 

to using, and restored later

• %esp, %ebp handled as 
described earlier

• Return value is passed from 
Callee to Caller in %eax

%ESP

Var 1

Var 2

Saved

Registers

Saved

Registers
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A Simple Example

int add3(int a, int b, int c)
{

int d;

d = a + b + c;

return d;
}

int foo(void)
{

return add3( 3, 4, 5 );
}
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A Simple Example
int add3(int a, int b, int c){

int d;
d = a + b + c;
return d;

}

# In general, one may need to push    
# callee-save registers onto the stack

# Add the three arguments
movl 8(%ebp), %eax
addl 12(%ebp), %eax
addl 16(%ebp), %eax

# Put the sum into d
movl %eax, -4(%ebp)

# Return value is already in eax

# In general, one may need to pop 
# callee-save registers

# Restore old ebp, discard stack frame
movl %ebp, %esp
popl %ebp

# Return
ret

add3:
# Save old ebp and set up new ebp
pushl %ebp
movl %esp, %ebp

# Allocate space for d
subl $4, $esp

%EBP

Arg c

Arg a
Arg b

old EIP
old EBP

%ESP
Var d
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A Simple Example
# No need to save caller-
# save registers either

# Push arguments in reverse order
pushl $5
pushl $4
pushl $3

call add3

# Pop arguments from the stack
addl $12, %esp

# Return value is already in eax

# Restore old ebp and
# discard stack frame
movl %ebp, %esp
popl %ebp

# Return
ret

foo:
# Save old ebp, and set-up
# new ebp
pushl %ebp
movl %esp, %ebp

# No local variables

# No need to save callee-save
# registers as we
# don’t use any registers

int foo(void) {
return add3( 3, 4, 5 );

}

%EBP

Arg c

Arg a
Arg b

old EIP

%ESP
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Conclusion
• Invoking a function
o Call: call the function
o Ret: return from the instruction

• Stack Frame for a function invocation includes 
o Return address, 
o Procedure arguments, 
o Local variables, and 
o Saved registers

• Base pointer EBP 
o Fixed reference point in the Stack Frame
o Useful for referencing arguments and local variables


