4 |)
Testing
Professor Jennifer Rexford
http://www.cs.princeton.edu/~jrex
The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 6 1)
4 N

Bugs, Bugs Everywhere q&

“On two occasions | have been asked [by members of Parliament!],
‘Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?’ I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.”

— Charles Babbage

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”
— Edsger Dijkstra

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”
— Donald Knuth

-
Goals of this Lecture

* Help you learn about:
* Internal testing
+ External testing
» General testing strategies

« Why?
» Hard to know if a large program works properly
* When developing a large program, a power programmer
expends at least as much effort writing test code as
he/she expends writing the program itself

* A power programmer is comfortable with a wide variety
of program testing techniques and strategies

Y

-
Program Verification

* Ideally: Prove that your program is correct
» Can you prove properties of the program?
* Can you prove that it even terminates?!!!

Specification ——
P Program |, Right/Wrong
program.c Checker
?

4 N
Program Testing &
» Pragmatically: Convince yourself that your
program probably works
Specification Testing Probab|y
program.c Strategy Right/Wrong
>/
e N
External vs. Internal Testing q!q

* Types of testing
» External testing
* Designing data to test your program
* Internal testing
 Designing your program to test itself

-

External Testing

» External testing: Designing data to test your program

» External testing taxonomy
(1) Boundary testing
(2) Statement testing
(3) Path testing
(4) Stress testing

* Let’s consider one at a time...

-
Boundary Testing

(1) Boundary testing

» “A testing technique using input values at, just below, and just
above, the defined limits of an input domain; and with input values

causing outputs to be at, just below, and just above, the defined
limits of an output domain.”

— Glossary of Computerized System and Software Development Terminology

* Alias corner case testing
» Almost all bugs occur at boundary conditions

« If program works for boundary conditions, it probably works
for all others

Y

-

Boundary Testing Example

» Code to get line from stdin and put in character array

int i;
char s[MAXLINE];
for (i=0; (s[il=getchar()) != "\n" && i1 < MAXLINE-1; i++)

S[i] = "\0";
printf('String: |%s]\n", s);

* Boundary conditions
* Input starts with \n' (empty line)
* Prints empty string (“\0”), so output is “||”
» End of file before "\n*
» Keeps calling getchar() and storing y in si]
» End of file immediately (empty file)
* Keeps calling getchar() and storing y in si]

~

Boundary Testing Example (cont.)

» Code to get line from stdin and put in character array

int i;
char s[MAXLINE];
for (i=0; (s[il=getchar()) !'= "\n" && i < MAXLINE-1; i++)

s[i] = "\0";
printf('String: |%s|\n", s);

» Boundary conditions
 Line exactly MAXLINE-1 characters long
* Output is correct, with 10’ in sfMAXLINE-1]
 Line exactly MAXLINE characters long
¢ Last character on the line is overwritten, and newline never read

+ Line more than MAXLINE characters long
» Some characters, plus newline, not read and remain on stdin

")

-

Boundary Testing Example (cont.)

* Rewrite the code

int i;
char s[MAXLINE];
for (i=0; I<MAXLINE-1; i++)
if ((s[i] = getchar()) == "\n")
break;
s[i] = "\0~;

» Another boundary condition: EOF

for (i=0; i<MAXLINE-1; i++)
if ((s[i] = getchar()) == "\n" || g[i] == EOF)
break;
s[i] = "\0";

* What are other boundary conditions?

\

. Elearltxll f?”II This is wrong.
» Exactly fu ?
« Over full Why
Y
~)

Boundary Testing Example (cont.) 3z

* Rewrite yet again

for (i=0; ; i++) {
int ¢ = getchar();

s[i] = "\0";
break;

else s[i] = c;

}

if (c==EOF || c=="\n" || i==MAXLINE-1) {

* There’s still a problem...

Input: Output:
Four Four@
score and seven score ang
years sevenyd
years@

Where's
the 'd?

%)

-

Ambiguity in Specification

« If line is too long, what should happen?
» Keep first MAXLINE characters, discard the rest?
» Keep first MAXLINE-1 characters + "\O' char, discard the rest?
» Keep first MAXLINE-1 characters + "\0' char, save the rest for the
next call to the input function?

* Probably, the specification didn’t even say what to do if
MAXLINE is exceeded
» Probably the person specifying it would prefer that unlimited-length
lines be handled without any special cases at all

* Moral: testing has uncovered a design problem, maybe even a
specification problem!

* Define what to do
» Truncate long lines?
» Save the rest of the text to be read as the next line?

~

Morals of This Little Story

» Complicated, messy boundary cases are often
symptomatic of bad design or bad specification

+ Clean up the specification if you can

* If you can't fix the specification, then fix the code

Y

-
Statement Testing

(2) Statement testing

» “Testing to satisfy the criterion that each statement in a program be
executed at least once during program testing.”
— Glossary of Computerized System and Software Development Terminology

(

Statement Testing Example

* Example pseudocode:

it (conditionl)
statementl;

else)
statement2; Statement testing:

if (condition2) Should make sure both “if’
statement3; statements and all 4 nested

else statements are executed
statement4;

* Requires two data sets; example:
« conditionl is true and condition2 is true
« Executes statementl and statement3
» conditionl is false and condition?2 is false
* Executes statement2 and statement4

-
Path Testing

(3) Path testing
+ “Testing to satisfy coverage criteria that each logical path through
the program be tested. Often paths through the program are
grouped into a finite set of classes. One path from each class is then
tested.”
— Glossary of Computerized System and Software Development Terminology

* Much more difficult than statement testing
» For simple programs, can enumerate all paths through the code
+ Otherwise, sample paths through code with random input

-
Path Testing Example

* Example pseudocode:

it (conditionl)
statementl;

else
statement2; Path testing:

if (condition2) Should make sure all logical
statement3; paths are executed

else
statement4;

* Requires four data sets:
« conditionl is true and condition2 is true
« conditionl is true and condition?2 is false
« conditionl1 is false and condition2 is true
« conditionl is false and condition2 is false

 Realistic program => combinatorial explosion!!!

-
Stress Testing

(4) Stress testing

» “Testing conducted to evaluate a system or component at or beyond
the limits of its specified requirements”
— Glossary of Computerized System and Software Development Terminology

* What to generate
* Very large inputs
* Random inputs (binary vs. ASCII)

» Use computer to generate inputs

(

Stress Testing Example 1

* Example program:

#include <stdio.h>
'“2}‘}2;”2‘?'” il Stress testing: Should
while ((c = getchar()) != EOF) | provide random (binary and
putchar(c); ASCII) inputs
return O;

}

* Intention: Copy all characters of stdin to stdout; but note the bug!!!
» Works for typical (human-generated) ASCII data sets

+ Random (computer-generated?) data set containing byte 255
(decimal), alias 11111111 (binary), alias y causes loop to terminate
before end-of-file

»)

-
Stress Testing Example 2

* Example program:

#include <stdio.h>
int main(void .
Short(chargoﬁnt - 0- Stress testing: Should
while (getchar() != EOF) provide very large inputs

charCount++;
printf(*"%hd\n*, charCount);
return 0O;

3

* Intention: Count and print number of characters in stdin
» Works for reasonably-sized data sets

» Fails for (computer-generated?) data set containing more
than 32767 characters

)

-
The assert Macro

* An aside...

* The assert macro
* One actual parameter, which should evaluate to true or false
* If true (non-zero):
* Do nothing
« If false (zero):
» Print message to stderr “assert at line x failed”
» Exit the process

2)

11

-

Uses of assert

 Typical uses of assert
+ Validate formal parameters

size_t Str_getlLength(const char *str) {
assert(str = NULL);

}

» Check for “impossible” logical flow

switch (state) {
case START: .. break;
case COMMENT: .. break;

default: assert(0); /* Never should get here */

3

+ Make sure dynamic memory allocation requests worked
 (Described later in course)

2)

~

Disabling asserts

* Problem: asserts can be time-consuming

+ Want them in code when debugging, but...
* Might want to remove them from released code

* Bad “solution”:
* When program is finished, delete asserts from code
+ But asserts are good documentation

* And in the “real world” no program ever is “finished”!!!

* Solution: Define the NDEBUG macro
» Place #define NDEBUG at top of .c file, before all calls of assert
+ Makes the assert macro expand to nothing
» Essentially, disables asserts

*)

12

-
Disabling asserts (cont.)

* Problem: Awkward to place #define NDEBUG in only
released code

+ Solution: Define NDEBUG when building
+ -D option of gcc defines a macro
e gcc217 -DNDEBUG myfile.c

» Defines NDEBUG macro in myfile.c, just as if myfile.c contains
#define NDEBUG

» Controversy: Should asserts be disabled in released
code?
= Asserts are very time consuming => yes
= Asserts are not very time consuming => sometimes unclear

* Would user prefer (1) exit via assert, or (2) possible data
corruption?

2)

-
Internal Testing

* Internal testing: Designing your program to test itself

* Internal testing techniques
(1) Testing invariants
(2) Verifying conservation properties
(3) Checking function return values
(4) Changing code temporarily
(5) Leaving testing code intact

e Let’s consider them one at a time...

%)

13

-

Testing Invariants

(1) Testing invariants

Alias testing pre-conditions and post-conditions

+ Some aspects of data structures should not vary
+ A function that affects data structure should check those invariants

at its leading and trailing edges

» Example: “doubly-linked list insertion” function

» At leading and trailing edges
» Traverse doubly-linked list

* When node x points forward to node y, does node y point

backward to node x?

* Example: “binary search tree insertion” function

* Atleading and trailing edges
e Traverse tree
« Are nodes are still sorted?

2

(

Testing Invariants (cont.)

* Convenient to use assert to test invariants

[#ifndef NDEBUG
int isvValid(MyType

bject) {

Test invariants here.

b5

void myFunction(MyType object) {
assert(isValid(object));

Manipulate object here.

assert(isValid(object));
}

AN

Can use NDEBUG
in your code, just
as assert does

%)

14

-

N
Verifying Conservation Properties @

(2) Verifying conservation properties
» Generalization of testing invariants

+ A function should check affected data structures at leading and
trailing edges

« Example: Str_concat() function
* Atleading edge, find lengths of two given strings; compute sum
* At trailing edge, find lengths of resulting string
* Is length of resulting string equal to sum?

» Example: List insertion function
» At leading edge, find old length of list
At trailing edge, find new length of list
» Does new length equal old length + 1?

»)

~

N
Checking Return Values q@

(3) Checking function return values

* In Java and C++:
* Method that detects error can “throw a checked exception”
 Calling method must handle the exception (or rethrow it)

* InC:
* No exception-handling mechanism
» Function that detects error typically indicates so via return value
» Programmer easily can forget to check return value
* Programmer (generally) should check return value

%)

15

-
Checking Return Values (cont.)

(3) Checking function return values (cont.)
« Example: scanf() returns number of values read

Bad code Good code
int i; int i;
scanf("'%d", &i); if (scanf("%d", &i) 1= 1)
/* Error */

» Example: printf() can fail if writing to file and disk is full; returns
number of characters (not values) written

Bad code??? Good code, or overkill???
int i = 100; int i = 100;
printf("'%d", 1); if (printf("%d", 1) 1= 3)

/* Error */

=
Changing Code Temporarily

(4) Changing code temporarily
Temporarily change code to generate artificial boundary or stress
tests

Example: Array-based sorting program
* Temporarily make array very small
* Does the program handle overflow?

* Remember this for Assignment 3...

Example: Program that uses a hash table
» Temporarily make hash function return a constant
» All bindings map to one bucket, which becomes very large
* Does the program handle large buckets?

2)

16

-
Leaving Testing Code Intact

(5) Leaving testing code intact
+ Leave important testing code in the code
* Maybe surround with #ifndef NDEBUG .. #endif
+ Control with -DNDEBUG gcc option
* Enables/disables assert macro

* Also could enable/disable your debugging code (see “Testing
Invariants” example)

» Beware of conflict:
» Extensive internal testing can lower maintenance costs
» Code clarity can lower maintenance costs
» But... Extensive internal testing can decrease code clarity!

»)

-
General Testing Strategies

» General testing strategies
(1) Testing incrementally
(2) Comparing implementations
(3) Automation
(4) Bug-driven testing
(5) Fault injection

* Let’s consider one at a time...

)

17

-

Testing Incrementally

(1) Testing incrementally

» Test as you write code
» Add tests as you create new cases
» Test simple parts before complex parts
* Test units (i.e., individual modules) before testing the system

* Do regression testing
* A bug fix often creates new bugs in a large software system, so...
* Must make sure system has not “regressed” such that previously
working functionality now is broken, so...
» Test all cases to compare the new version with the previous one

»)

(

Testing Incrementally (cont.)

(1) Testing incrementally (cont.)
» Create scaffolds and stubs to test the code that you care about

Scaffold: Temporary
Function that | | code that calls code

calls code that
e G Sl that you care about

A
|Code that you care about|

L _ Stub: Temporary
Function called Function called code that is called
by code that by code that ||« by code that you
you care about you care about
care about
%)

18

-
Comparing Implementations

(2) Compare implementations

» Make sure that multiple independent implementations behave the
same

« Example: Compare behavior of your “decomment” vs. “gcc217 —E”

« Example: Compare behavior of your str.h functions vs. standard
library string.h functions

7

=
Automation

(3) Automation
» Testing manually is tedious and unreliable, so...

+ Create testing code
» Scripts and data files to test your programs (recall decomment
program testing)
» Software clients to test your modules (recall Str module testing)

* Know what to expect
» Generate output that is easy to recognize as right or wrong
» Example: Generate output of di ff command instead of raw
program output

* Automated testing can provide:
* Much better coverage than manual testing
» Bonus: Examples of typical/atypical use for other programmers

%)

19

f

Bug-Driven Testing

(4) Bug-driven testing

* Find a bug => immediately create a test that catches it

+ Facilitates regression testing

)

-

Fault Injection

(5) Fault injection
* Intentionally (temporarily) inject bugs!!!
* Then determine if testing finds them

+ Test the testing!!!

“°

20

-
Who Tests What

* Programmers
» White-box testing
* Pro: An implementer knows all data paths
» Con: Influenced by how code is designed/written

» Quality Assurance (QA) engineers
» Black-box testing
* Pro: No knowledge about the implementation
» Con: Unlikely to test all logical paths

» Customers
* Field testing
* Pros: Unexpected ways of using the software; “debug” specs
» Cons: Not enough cases; customers don’t like “participating” in this
process; malicious users exploit the bugs

4

(

Summary

 External testing taxonomy
* Boundary testing
+ Statement testing
» Path testing
+ Stress testing

* Internal testing techniques
» Checking invariants
+ Verifying conservation properties
» Checking function return values
» Changing code temporarily
+ Leaving testing code intact

2

-
Summary (cont.)

» General testing strategies
» Testing incrementally
* Regression testing
» Scaffolds and stubs
» Automation
» Comparing independent implementations
* Bug-driven testing
Fault injection

* Test the code, the tests — and the specification!

©J

-
The Rest of This Week

* Reading
» Required: King book: chapters 8, 9, 11, 12, and 13
* Recommended: Kernighan and Pike: chapters 5 and 6
+ Recommended: GNU Software: chapter 8

* Assignment #2
» One-week assignment on String Module
* Due 9pm Sunday February 22

» Checking your understanding of the first two weeks

» Try questions 1, 3e, 4, and 6 of the Spring 2008 midterm

* Questions:
http://www.cs.princeton.edu/courses/archive/spring08/cos217/exam
1/spring08-cos217-exam1.pdf

* Answers:
http://www.cs.princeton.edu/courses/archive/spring08/cos217/exam
1/spring08-cos217-exam1-answers.pdf “)

