
1

1

Testing

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 6

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Bugs, Bugs Everywhere

“On two occasions I have been asked [by members of Parliament!],
‘Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?’ I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.”
‒ Charles Babbage

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”
‒ Edsger Dijkstra

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”
‒ Donald Knuth

2

3

Goals of this Lecture

• Help you learn about:
• Internal testing
• External testing
• General testing strategies

• Why?
• Hard to know if a large program works properly
• When developing a large program, a power programmer

expends at least as much effort writing test code as
he/she expends writing the program itself

• A power programmer is comfortable with a wide variety
of program testing techniques and strategies

4

Program Verification

• Ideally: Prove that your program is correct
• Can you prove properties of the program?
• Can you prove that it even terminates?!!!

Program
Checkerprogram.c

Right/Wrong
Specification

?

3

5

Program Testing

• Pragmatically: Convince yourself that your
program probably works

Testing
Strategyprogram.c

Probably
Right/Wrong

Specification

6

External vs. Internal Testing

• Types of testing
• External testing

• Designing data to test your program
• Internal testing

• Designing your program to test itself

4

7

External Testing

• External testing: Designing data to test your program

• External testing taxonomy
(1) Boundary testing
(2) Statement testing
(3) Path testing
(4) Stress testing

• Let’s consider one at a time…

8

Boundary Testing

(1) Boundary testing
• “A testing technique using input values at, just below, and just

above, the defined limits of an input domain; and with input values
causing outputs to be at, just below, and just above, the defined
limits of an output domain.”
‒ Glossary of Computerized System and Software Development Terminology

• Alias corner case testing

• Almost all bugs occur at boundary conditions

• If program works for boundary conditions, it probably works
for all others

5

9

Boundary Testing Example
• Code to get line from stdin and put in character array

• Boundary conditions
• Input starts with '\n' (empty line)

• Prints empty string (“\0”), so output is “||”
• End of file before '\n‘

• Keeps calling getchar() and storing ӱ in s[i]
• End of file immediately (empty file)

• Keeps calling getchar() and storing ӱ in s[i]

int i;
char s[MAXLINE];
for (i=0; (s[i]=getchar()) != '\n' && i < MAXLINE-1; i++)

;
s[i] = '\0';
printf("String: |%s|\n", s);

10

Boundary Testing Example (cont.)
• Code to get line from stdin and put in character array

• Boundary conditions
• Line exactly MAXLINE-1 characters long

• Output is correct, with ‘\0’ in s[MAXLINE-1]
• Line exactly MAXLINE characters long

• Last character on the line is overwritten, and newline never read
• Line more than MAXLINE characters long

• Some characters, plus newline, not read and remain on stdin

int i;
char s[MAXLINE];
for (i=0; (s[i]=getchar()) != '\n' && i < MAXLINE-1; i++)

;
s[i] = '\0';
printf("String: |%s|\n", s);

6

11

Boundary Testing Example (cont.)
• Rewrite the code

• Another boundary condition: EOF

• What are other boundary conditions?
• Nearly full
• Exactly full
• Over full

int i;
char s[MAXLINE];
for (i=0; i<MAXLINE-1; i++)

if ((s[i] = getchar()) == '\n')
break;

s[i] = '\0';

for (i=0; i<MAXLINE-1; i++)
if ((s[i] = getchar()) == '\n' || s[i] == EOF)

break;
s[i] = '\0';

This is wrong.
Why?

12

Boundary Testing Example (cont.)
• Rewrite yet again

Output:

• There’s still a problem...

Input:
Four
score and seven
years

FourØ
score anØ
sevenØ

yearsØ

Where’s
the ‘d’?

for (i=0; ; i++) {
int c = getchar();
if (c==EOF || c=='\n' || i==MAXLINE-1) {

s[i] = '\0';
break;

}
else s[i] = c;

}

7

13

Ambiguity in Specification
• If line is too long, what should happen?

• Keep first MAXLINE characters, discard the rest?
• Keep first MAXLINE-1 characters + '\0' char, discard the rest?
• Keep first MAXLINE-1 characters + '\0' char, save the rest for the

next call to the input function?

• Probably, the specification didn’t even say what to do if
MAXLINE is exceeded
• Probably the person specifying it would prefer that unlimited-length

lines be handled without any special cases at all
• Moral: testing has uncovered a design problem, maybe even a

specification problem!

• Define what to do
• Truncate long lines?
• Save the rest of the text to be read as the next line?

14

Morals of This Little Story

• Complicated, messy boundary cases are often
symptomatic of bad design or bad specification

• Clean up the specification if you can

• If you can’t fix the specification, then fix the code

8

15

Statement Testing

(2) Statement testing

• “Testing to satisfy the criterion that each statement in a program be
executed at least once during program testing.”
‒ Glossary of Computerized System and Software Development Terminology

16

Statement Testing Example
• Example pseudocode:

• Requires two data sets; example:
• condition1 is true and condition2 is true

• Executes statement1 and statement3
• condition1 is false and condition2 is false

• Executes statement2 and statement4

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Statement testing:

Should make sure both “if”
statements and all 4 nested
statements are executed

9

17

Path Testing

(3) Path testing
• “Testing to satisfy coverage criteria that each logical path through

the program be tested. Often paths through the program are
grouped into a finite set of classes. One path from each class is then
tested.”
‒ Glossary of Computerized System and Software Development Terminology

• Much more difficult than statement testing
• For simple programs, can enumerate all paths through the code
• Otherwise, sample paths through code with random input

18

Path Testing Example
• Example pseudocode:

• Requires four data sets:
• condition1 is true and condition2 is true
• condition1 is true and condition2 is false
• condition1 is false and condition2 is true
• condition1 is false and condition2 is false

• Realistic program => combinatorial explosion!!!

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Path testing:

Should make sure all logical
paths are executed

10

19

Stress Testing

(4) Stress testing
• “Testing conducted to evaluate a system or component at or beyond

the limits of its specified requirements”
‒ Glossary of Computerized System and Software Development Terminology

• What to generate
• Very large inputs
• Random inputs (binary vs. ASCII)

• Use computer to generate inputs

20

Stress Testing Example 1
• Example program:

• Intention: Copy all characters of stdin to stdout; but note the bug!!!

• Works for typical (human-generated) ASCII data sets

• Random (computer-generated?) data set containing byte 255
(decimal), alias 11111111 (binary), alias ӱ causes loop to terminate
before end-of-file

#include <stdio.h>
int main(void) {

char c;
while ((c = getchar()) != EOF)

putchar(c);
return 0;

}

Stress testing: Should
provide random (binary and
ASCII) inputs

11

21

Stress Testing Example 2
• Example program:

• Intention: Count and print number of characters in stdin

• Works for reasonably-sized data sets

• Fails for (computer-generated?) data set containing more
than 32767 characters

#include <stdio.h>
int main(void) {

short charCount = 0;
while (getchar() != EOF)

charCount++;
printf("%hd\n", charCount);
return 0;

}

Stress testing: Should
provide very large inputs

22

The assert Macro

• An aside…

• The assert macro
• One actual parameter, which should evaluate to true or false
• If true (non-zero):

• Do nothing
• If false (zero):

• Print message to stderr “assert at line x failed”
• Exit the process

12

23

Uses of assert
• Typical uses of assert

• Validate formal parameters

• Check for “impossible” logical flow

• Make sure dynamic memory allocation requests worked
• (Described later in course)

size_t Str_getLength(const char *str) {
assert(str != NULL);
…

}

switch (state) {
case START: … break;
case COMMENT: … break;
…
default: assert(0); /* Never should get here */

}

24

Disabling asserts
• Problem: asserts can be time-consuming

• Want them in code when debugging, but…
• Might want to remove them from released code

• Bad “solution”:
• When program is finished, delete asserts from code
• But asserts are good documentation
• And in the “real world” no program ever is “finished”!!!

• Solution: Define the NDEBUG macro
• Place #define NDEBUG at top of .c file, before all calls of assert
• Makes the assert macro expand to nothing
• Essentially, disables asserts

13

25

Disabling asserts (cont.)
• Problem: Awkward to place #define NDEBUG in only

released code

• Solution: Define NDEBUG when building
• -D option of gcc defines a macro
• gcc217 -DNDEBUG myfile.c

• Defines NDEBUG macro in myfile.c, just as if myfile.c contains
#define NDEBUG

• Controversy: Should asserts be disabled in released
code?
• Asserts are very time consuming => yes
• Asserts are not very time consuming => sometimes unclear

• Would user prefer (1) exit via assert, or (2) possible data
corruption?

26

Internal Testing
• Internal testing: Designing your program to test itself

• Internal testing techniques
(1) Testing invariants
(2) Verifying conservation properties
(3) Checking function return values
(4) Changing code temporarily
(5) Leaving testing code intact

• Let’s consider them one at a time…

14

27

Testing Invariants
(1) Testing invariants

• Alias testing pre-conditions and post-conditions
• Some aspects of data structures should not vary
• A function that affects data structure should check those invariants

at its leading and trailing edges

• Example: “doubly-linked list insertion” function
• At leading and trailing edges

• Traverse doubly-linked list
• When node x points forward to node y, does node y point

backward to node x?

• Example: “binary search tree insertion” function
• At leading and trailing edges

• Traverse tree
• Are nodes are still sorted?

28

Testing Invariants (cont.)
• Convenient to use assert to test invariants

#ifndef NDEBUG
int isValid(MyType object) {

…
Test invariants here.
Return 1 (TRUE) if object passes
all tests, and 0 (FALSE) otherwise.
…

}
#endif

void myFunction(MyType object) {
assert(isValid(object));
…
Manipulate object here.
…
assert(isValid(object));

}

Can use NDEBUG
in your code, just
as assert does

15

29

Verifying Conservation Properties
(2) Verifying conservation properties

• Generalization of testing invariants
• A function should check affected data structures at leading and

trailing edges

• Example: Str_concat() function
• At leading edge, find lengths of two given strings; compute sum
• At trailing edge, find lengths of resulting string
• Is length of resulting string equal to sum?

• Example: List insertion function
• At leading edge, find old length of list
• At trailing edge, find new length of list
• Does new length equal old length + 1?

30

Checking Return Values
(3) Checking function return values

• In Java and C++:
• Method that detects error can “throw a checked exception”
• Calling method must handle the exception (or rethrow it)

• In C:
• No exception-handling mechanism
• Function that detects error typically indicates so via return value
• Programmer easily can forget to check return value
• Programmer (generally) should check return value

16

31

Checking Return Values (cont.)
(3) Checking function return values (cont.)

• Example: scanf() returns number of values read

• Example: printf() can fail if writing to file and disk is full; returns
number of characters (not values) written

int i;
if (scanf("%d", &i) != 1)

/* Error */

int i = 100;
if (printf("%d", i) != 3)

/* Error */

int i;
scanf("%d", &i);

Bad code Good code

int i = 100;
printf("%d", i);

Bad code??? Good code, or overkill???

32

Changing Code Temporarily
(4) Changing code temporarily

• Temporarily change code to generate artificial boundary or stress
tests

• Example: Array-based sorting program
• Temporarily make array very small
• Does the program handle overflow?

• Remember this for Assignment 3…

• Example: Program that uses a hash table
• Temporarily make hash function return a constant
• All bindings map to one bucket, which becomes very large
• Does the program handle large buckets?

17

33

Leaving Testing Code Intact
(5) Leaving testing code intact

• Leave important testing code in the code
• Maybe surround with #ifndef NDEBUG … #endif
• Control with –DNDEBUG gcc option

• Enables/disables assert macro
• Also could enable/disable your debugging code (see “Testing

Invariants” example)

• Beware of conflict:
• Extensive internal testing can lower maintenance costs
• Code clarity can lower maintenance costs
• But… Extensive internal testing can decrease code clarity!

34

General Testing Strategies

• General testing strategies
(1) Testing incrementally
(2) Comparing implementations
(3) Automation
(4) Bug-driven testing
(5) Fault injection

• Let’s consider one at a time…

18

35

Testing Incrementally
(1) Testing incrementally

• Test as you write code
• Add tests as you create new cases
• Test simple parts before complex parts
• Test units (i.e., individual modules) before testing the system

• Do regression testing
• A bug fix often creates new bugs in a large software system, so…
• Must make sure system has not “regressed” such that previously

working functionality now is broken, so…
• Test all cases to compare the new version with the previous one

36

Testing Incrementally (cont.)
(1) Testing incrementally (cont.)

• Create scaffolds and stubs to test the code that you care about

Code that you care about

Function called
by code that
you care about

Function called
by code that
you care about

Function that
calls code that
you care about

Scaffold: Temporary
code that calls code
that you care about

Stub: Temporary
code that is called
by code that you
care about

19

37

Comparing Implementations
(2) Compare implementations

• Make sure that multiple independent implementations behave the
same

• Example: Compare behavior of your “decomment” vs. “gcc217 –E”

• Example: Compare behavior of your str.h functions vs. standard
library string.h functions

38

Automation
(3) Automation

• Testing manually is tedious and unreliable, so…

• Create testing code
• Scripts and data files to test your programs (recall decomment

program testing)
• Software clients to test your modules (recall Str module testing)

• Know what to expect
• Generate output that is easy to recognize as right or wrong
• Example: Generate output of diff command instead of raw

program output

• Automated testing can provide:
• Much better coverage than manual testing
• Bonus: Examples of typical/atypical use for other programmers

20

39

Bug-Driven Testing

(4) Bug-driven testing

• Find a bug => immediately create a test that catches it

• Facilitates regression testing

40

Fault Injection

(5) Fault injection

• Intentionally (temporarily) inject bugs!!!

• Then determine if testing finds them

• Test the testing!!!

21

41

Who Tests What
• Programmers

• White-box testing
• Pro: An implementer knows all data paths
• Con: Influenced by how code is designed/written

• Quality Assurance (QA) engineers
• Black-box testing
• Pro: No knowledge about the implementation
• Con: Unlikely to test all logical paths

• Customers
• Field testing
• Pros: Unexpected ways of using the software; “debug” specs
• Cons: Not enough cases; customers don’t like “participating” in this

process; malicious users exploit the bugs

42

Summary

• External testing taxonomy
• Boundary testing
• Statement testing
• Path testing
• Stress testing

• Internal testing techniques
• Checking invariants
• Verifying conservation properties
• Checking function return values
• Changing code temporarily
• Leaving testing code intact

22

43

Summary (cont.)

• General testing strategies
• Testing incrementally

• Regression testing
• Scaffolds and stubs

• Automation
• Comparing independent implementations
• Bug-driven testing
• Fault injection

• Test the code, the tests – and the specification!

44

The Rest of This Week
• Reading

• Required: King book: chapters 8, 9, 11, 12, and 13
• Recommended: Kernighan and Pike: chapters 5 and 6
• Recommended: GNU Software: chapter 8

• Assignment #2
• One-week assignment on String Module
• Due 9pm Sunday February 22

• Checking your understanding of the first two weeks
• Try questions 1, 3e, 4, and 6 of the Spring 2008 midterm
• Questions:

http://www.cs.princeton.edu/courses/archive/spring08/cos217/exam
1/spring08-cos217-exam1.pdf

• Answers:
http://www.cs.princeton.edu/courses/archive/spring08/cos217/exam
1/spring08-cos217-exam1-answers.pdf

