Integral Data Types in C

Professor Jennifer Rexford
http://www.cs.princeton.edu/~jrex

Goals for this Lecture

- Binary number system
 - Why binary?
 - Converting between decimal and binary
 - … and octal and hexadecimal number systems
- Finite representations of binary integers
 - Unsigned and signed integers
 - Integer addition and subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift-left and shift-right
- The C integral data types
 - char, short, int, long
 - signed and unsigned variants
Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic

Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0 \)
- Binary (base 2)
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22 \)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

\[\begin{align*}
12/2 & = 6 \quad R = 0 \\
6/2 & = 3 \quad R = 0 \\
3/2 & = 1 \quad R = 1 \\
1/2 & = 0 \quad R = 1 \\
\end{align*} \]

Result = 1100
Writing Bits is Tedious for People

- **Octal (base 8)**
 - Digits 0, 1, ..., 7

- **Hexadecimal (base 16)**
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Binary</th>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number `1010 0010 1010 1001` converted to hex is `B2A9`.

Representing Colors: RGB

- **Three primary colors**
 - Red
 - Green
 - Blue

- **Strength**
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- **In HTML, on the course Web page**
 - **Red**: `Symbol Table Assignment Due</i>`
 - **Blue**: `Spring Break</i>`

- **Same thing in digital cameras**
 - Each pixel is a mixture of red, green, and blue
Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)
- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n
- Examples of unsigned integers
 - 00000001 \rightarrow 1
 - 00001111 \rightarrow 15
 - 00010000 \rightarrow 16
 - 00100001 \rightarrow 33
 - 11111111 \rightarrow 255

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR ("exclusive OR")

0100 0101 69
+ 0110 0111 103
1010 1100 172

Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, …, 99999
 - E.g., eight-bit numbers 0, 1, …, 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, …
 - E.g., eight-bit number goes from 255 to 0, 1, …

- Adding 2^n doesn’t change the answer
 - For eight-bit number, $n=8$ and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 37

- This can help us do subtraction…
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - 1 - b) + 1$
One’s and Two’s Complement

- One’s complement: flip every bit
 - E.g., b is 01000101 (i.e., 69 in decimal)
 - One’s complement is 10111010
 - That’s simply 255-69

- Subtracting from 11111111 is easy (no carry needed!)

\[
\begin{array}{c}
11111111 \\
- \quad 01000101 \\
\hline
10111010
\end{array}
\]

- Two’s complement
 - Add 1 to the one’s complement
 - E.g., (255 – 69) + 1 \(\Rightarrow\) 1011 1011

Putting it All Together

- Computing “a – b”
 - Same as “a + 256 – b”
 - Same as “a + (255 – b) + 1”
 - Same as “a + onesComplement(b) + 1”
 - Same as “a + twosComplement(b)”

- Example: 172 – 69
 - The original number 69: 0100 0101
 - One’s complement of 69: 1011 1010
 - Two’s complement of 69: 1011 1011
 - Add to the number 172: 1010 1100
 - The sum comes to: 0110 0111
 - Equals: 103 in decimal

\[
\begin{array}{c}
10101100 \\
+ \quad 10111011 \\
\hline
101100111
\end{array}
\]
Signed Integers

- Sign-magnitude representation
 - Use one bit to store the sign
 - Zero for positive number
 - One for negative number
 - Examples
 - E.g., 0010 1100 \(\rightarrow\) 44
 - E.g., 1010 1100 \(\rightarrow\) -44
 - Hard to do arithmetic this way, so it is rarely used

- Complement representation
 - One’s complement
 - Flip every bit
 - E.g., 1101 0011 \(\rightarrow\) -44
 - Two’s complement
 - Flip every bit, then add 1
 - E.g., 1101 0100 \(\rightarrow\) -44

Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?

- Unsigned integers
 - All arithmetic is "modulo" arithmetic
 - Sum would just wrap around

- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536
Bitwise Operators: AND and OR

- Bitwise AND (&)
 \[
 \begin{array}{c|c|c}
 & 0 & 1 \\
 0 & 0 & 0 \\
 1 & 0 & 1 \\
 \end{array}
 \]

- Bitwise OR (|)
 \[
 \begin{array}{c|c|c}
 & 0 & 1 \\
 0 & 0 & 1 \\
 1 & 1 & 1 \\
 \end{array}
 \]

- Mod on the cheap!
 - E.g., 53 % 16
 - ... is same as 53 & 15;

53
 \[
 \begin{array}{c|c|c|c|c|c}
 & 0 & 0 & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

& 15
 \[
 \begin{array}{c|c|c|c|c|c}
 & 0 & 0 & 0 & 1 & 1 & 1 \\
 \end{array}
 \]

\[
\begin{array}{c|c|c|c|c|c}
 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Bitwise Operators: Not and XOR

- One’s complement (~)
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x & \sim 7; \)

- XOR (^)
 - 0 if both bits are the same
 - 1 if the two bits are different

\[
\begin{array}{c|c}
 ^ & 0 & 1 \\
 0 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]
Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0

 53 0 0 1 1 0 1 0 1
 53<<2 1 1 0 1 0 0 0 0

- Shift right (>>): Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers? Varies across machines…
 - Can vary from one machine to another!

 53 0 0 1 1 0 1 0 1
 53>>2 0 0 0 1 1 0 1

Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

 0 0 1 1 0 1 0 1

 - Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - Look at the last bit: n & 1
 - Check if it is a 1: (n & 1) == 1, or simply (n & 1)
Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>

int main(void) {
    unsigned n, count;

    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect number.\n");
        exit(EXIT_FAILURE);
    }

    for (count=0; n; n >>= 1)
        count += (n & 1);

    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```

Data Types

- Programming languages combine:
 - Bits into bytes
 - Bytes into larger entities

- Combinations of bytes have types; why?
 - Facilitates abstraction
 - Enables compiler to do type checking

- C has 11 primitive data types
 - 8 integral data types (described in this lecture)
 - Four different sizes (char, short, int, and long)
 - Signed vs. unsigned
 - 3 floating-point data types (described in next lecture)
C Integral Data Types

• Why char vs. short vs. int vs. long?
 • Small sizes conserve memory
 • Large sizes provide more range

• Why signed vs. unsigned?
 • Signed types allow negatives
 • Unsigned types allow larger positive numbers
 • (Dubious value: Java omits unsigned types)

• When to use unsigned?
 • When you really need that extra bit
 • When you’ll do lots of bit shifting
 • When you’ll never do \(a < 0 \) test

C Integral Data Types (continued)

• Integral types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Typically Used to Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>signed char</td>
<td>1</td>
<td>The numeric code of a character</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>The numeric code of a character</td>
</tr>
<tr>
<td>(signed) short</td>
<td>2*</td>
<td>A small integer</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2*</td>
<td>A small non-negative integer</td>
</tr>
<tr>
<td>(signed) int</td>
<td>4*</td>
<td>An integer</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4*</td>
<td>A non-negative integer</td>
</tr>
<tr>
<td>(signed) long</td>
<td>4*</td>
<td>An integer</td>
</tr>
<tr>
<td>unsigned long</td>
<td>4*</td>
<td>A non-negative integer</td>
</tr>
</tbody>
</table>

* On hats; C90 standard does not specify size
The **int** Data Type

- **Description:** A positive or negative integer
 - Same as signed int

- **Size:** System dependent
 - \(16 \leq \text{bits in short} \leq \text{bits in int} \leq \text{bits in long}\)
 - Usually 16 bits (alias 2 bytes) or 32 bits (alias 4 bytes)
 - The "natural word size" of the computer

The **int** Data Type (cont.)

- **Example constants (assuming 4 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>00000000 00000000 00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>-123</td>
<td>11111111 11111111 11111111 10000110</td>
<td>negative form</td>
</tr>
<tr>
<td>2147483647</td>
<td>01111111 11111111 11111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>-2147483648</td>
<td>10000000 00000000 00000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>123</td>
<td>00000000 00000000 00000000 01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>-123</td>
<td>11111111 11111111 11111111 10000110</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

- **Leading zero means octal**
- **Leading zero-x means hexadecimal**
- **High-order bit indicates sign**
- **Two's complement**
The **unsigned int** Data Type

- **Description:** A positive integer
- **Size:** System dependent
 - Same as int
- **Example constants (assuming 4 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>12U</td>
<td>00000000 00000000 00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>4294967295U</td>
<td>11111111 11111111 11111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>0</td>
<td>00000000 00000000 00000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>0173U</td>
<td>00000000 00000000 00000000 01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>0x78U</td>
<td>00000000 00000000 00000000 01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

Note “U” suffix

Same range as int, but shifted on number line

The **long** Data Type

- **Description:** A positive or negative integer
 - Same as signed long
- **Size:** System dependent
 - 16 <= bits in short <= bits in int <= bits in long
 - Usually 32 bits, alias 4 bytes
- **Example constants (assuming 4 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>12L</td>
<td>00000000 00000000 00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>-12L</td>
<td>11111111 11111111 11111111 10000101</td>
<td>negative form</td>
</tr>
<tr>
<td>2147483647L</td>
<td>01111111 11111111 11111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>-2147483648L</td>
<td>10000000 00000000 00000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>0173L</td>
<td>00000000 00000000 00000000 01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>0x78L</td>
<td>00000000 00000000 00000000 01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

Note “L” suffix
The **unsigned long** Data Type

- **Description:** A positive integer
- **Size:** System dependent
 - Same as `long`
- **Example constants (assuming 4 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (UL)</td>
<td>00000000 00000000 00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>4294967295UL</td>
<td>11111111 11111111 11111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>0UL</td>
<td>00000000 00000000 00000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>0x7BUL</td>
<td>00000000 00000000 00000000 01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

Note "UL" suffix

The **short** Data Type

- **Description:** A positive or negative integer
 - Same as `signed short`
- **Size:** System dependent
 - $16 \leq$ bits in `short` \leq bits in `int` \leq bits in `long`
 - Usually 16 bits, alias 2 bytes
- **Example constants (assuming 2 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(short)12</td>
<td>00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>(short)-12</td>
<td>11111111 10000101</td>
<td>negative form</td>
</tr>
<tr>
<td>(short)32767</td>
<td>01111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>(short)-32768</td>
<td>10000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>(short)0173</td>
<td>00000000 01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>(short)0x1B</td>
<td>00000000 01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

No way to express constant of type short, so must use cast
The **unsigned short** Data Type

- **Description:** A positive integer
- **Size:** System dependent
 - Same as short
- **Example constants (assuming 4 bytes)**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(unsigned short) 123U</td>
<td>00000000 01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>(unsigned short) 65535U</td>
<td>11111111 11111111</td>
<td>largest</td>
</tr>
<tr>
<td>(unsigned short) 0U</td>
<td>00000000 00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>(unsigned short) 0173U</td>
<td>00000000 01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>(unsigned short) 0x78U</td>
<td>00000000 01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

No way to express constant of type unsigned short, so must use cast

The **signed char** Data Type

- **Description:** A (small) positive or negative integer
- **Size:** 1 byte
- **Example constants**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(signed char) 123</td>
<td>01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>(signed char) -123</td>
<td>10000101</td>
<td>negative form</td>
</tr>
<tr>
<td>(signed char) 12</td>
<td>01111111</td>
<td>largest</td>
</tr>
<tr>
<td>(signed char) -128</td>
<td>10000000</td>
<td>smallest</td>
</tr>
<tr>
<td>(signed char) 0173</td>
<td>01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>(signed char) 0x78</td>
<td>01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

No way to express constant of type signed char, so must use cast
The unsigned char Data Type

- Description: A (small) positive integer
- Size: 1 byte
- Example constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Binary Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char 123</td>
<td>01111011</td>
<td>decimal form</td>
</tr>
<tr>
<td>(unsigned char) 255</td>
<td>11111111</td>
<td>largest</td>
</tr>
<tr>
<td>(unsigned char) 0</td>
<td>00000000</td>
<td>smallest</td>
</tr>
<tr>
<td>(unsigned char) 0177</td>
<td>01111011</td>
<td>octal form</td>
</tr>
<tr>
<td>(unsigned char) 0x7B</td>
<td>01111011</td>
<td>hexadecimal form</td>
</tr>
</tbody>
</table>

No way to express constant of type unsigned char, so must use cast

The char Data Type

- On some systems, char means signed char
- On other systems, char means unsigned char
- Obstacle to portability

```c
int a[256];
char c;
c = (char)255;
...
... a[c] ...
/* char is unsigned => a[255] => OK */
/* char is signed => a[-1] => out of bounds */
```
The char Data Type (cont.)

• On your system, is char signed or unsigned?

```c
#include <stdio.h>
int main(void) {
    char c = (char)0x80;
    if (c > 0)
        printf("unsigned");
    else
        printf("signed");
    return 0;
}
```

• Output on hats

```
signed
```
Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, …
 - Pixels, sounds, colors, etc.

- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction

- Binary operations in C
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic

- C integral data types
 - char, short, int, long (signed and unsigned)

The Rest of the Week

- Reading
 - Required: *C Programming*: 4, 5, 6, 7, 14, 15, and 20.1
 - Recommended: *Computer Systems*: 2
 - Recommended: *Programming with GNU Software*: 3, 6

- Monday office hours
 - My office hours by appointment, instead of usual 4:30pm

- Wednesday’s lecture
 - C Fundamentals

- Programming assignment
 - A “Decomment” Program
 - Due Sunday at 9pm