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9.  Scientific Computing
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Applications of Scientific Computing

Science and engineering challenges.
 Fluid dynamics.
 Seismic surveys.
 Plasma dynamics.
 Ocean circulation.
 Electronics design.
 Pharmaceutical design.
 Human genome project.
 Vehicle crash simulation.
 Global climate simulation.
 Nuclear weapons simulation.
 Molecular dynamics simulation.

Common features.
 Problems tend to be continuous instead of discrete.
 Algorithms must scale to handle huge problems.

Commercial applications.
 Web search.
 Financial modeling.
 Computer graphics.
 Digital audio and video.
 Natural language processing.
 Architecture walk-throughs.
 Medical diagnostics (MRI, CAT).
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Floating Point

IEEE 754 representation.
 Used by all modern computers.
 Scientific notation, but in binary.
 Single precision:  float = 32 bits.
 Double precision:  double = 64 bits.

Ex.  Single precision representation of -0.453125.

1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit exponent significand

125 1/2 + 1/4 + 1/16 = 0.8125-1

-1 × 2125 - 127 × 1.8125  =  -0.453125

bias phantom bit
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Floating Point

Remark.  Most real numbers are not representable, including π and 1/10.

Roundoff error.  When result of calculation is not representable.
Consequence.  Non-intuitive behavior for uninitiated.

Financial computing.  Calculate 9% sales tax on a 50¢ phone call.
Banker's rounding.  Round to nearest integer, to even integer if tie.

if (0.1 + 0.2 == 0.3) {  /* false */  }
if (0.1 + 0.3 == 0.4) {  /* true  */  }

double a1 = 1.14 * 75;      // 85.49999999999999
double a2 = Math.round(a1); // 85

double b1 = 1.09 * 50;      // 54.50000000000001
double b2 = Math.round(b1); // 55 SEC violation (!)

you lost 1¢
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Floating Point

Remark.  Most real numbers are not representable, including π and 1/10.

Roundoff error.  When result of calculation is not representable.
Consequence.  Non-intuitive behavior for uninitiated.

if (0.1 + 0.2 == 0.3) {  /* false */  }
if (0.1 + 0.3 == 0.4) {  /* true  */  }

“  Floating point numbers are like piles of sand; every time
    you move them around, you lose a little sand and pick up
    a little dirt. ” — Brian Kernighan and P. J. Plauger
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Catastrophic Cancellation

A simple function.

Goal.  Plot f(x) for  -4 ⋅ 10-8  ≤  x  ≤  4 ⋅ 10-8.

Exact answer

! 

f (x)  =  
1 " cos x

x
2
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Catastrophic Cancellation

A simple function.

Goal.  Plot f(x) for  -4 ⋅ 10-8  ≤  x  ≤  4 ⋅ 10-8.
! 

f (x)  =  
1 " cos x

x
2

IEEE 754 double precision answer
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Catastrophic Cancellation

Ex.  Evaluate fl(x) for x = 1.1e-8.
 Math.cos(x) = 0.99999999999999988897769753748434595763683319091796875.

 (1.0 - Math.cos(x)) = 1.1102e-16

 (1.0 - Math.cos(x)) / (x*x) = 0.9175

Catastrophic cancellation.  Devastating loss of precision when small
numbers are computed from large numbers, which themselves are
subject to roundoff error.

nearest floating point value agrees with
exact answer to 16 decimal places.

inaccurate estimate of exact answer (6.05 ⋅ 10-17)

80% larger than exact answer (about 0.5)

public static double fl(double x) {
   return (1.0 - Math.cos(x)) / (x* x);
}
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Numerical Catastrophes

Ariane 5 rocket.  [June 4, 1996]
 10 year, $7 billion ESA project exploded after launch.
 64-bit float converted to 16 bit signed int.
 Unanticipated overflow.

Vancouver stock exchange.  [November, 1983]
 Index undervalued by 44%.
 Recalculated index after each trade by adding change in price.
 22 months of accumulated truncation error.

Patriot missile accident.  [February 25, 1991]
 Failed to track scud; hit Army barracks, killed 28.
 Inaccuracy in measuring time in 1/20 of a second

since using 24 bit binary floating point.

Copyright, Arianespace
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Gaussian Elimination
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0 x0 + 1 x1 + 1 x2 = 4  

2 x0 + 4 x1 - 2 x2 = 2  
0 x0 + 3 x1 + 15 x2 = 36  
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Linear System of Equations

Linear system of equations.  N linear equations in N unknowns.

Fundamental problems in science and engineering.
 Chemical equilibrium.
 Linear and nonlinear optimization.
 Kirchoff's current and voltage laws.
 Hooke's law for finite element methods.
 Leontief's model of economic equilibrium.
 Numerical solutions to differential equations.
 …

matrix notation:  find x such that Ax = b
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Chemical Equilibrium

Ex.  Combustion of propane.

Stoichiometric constraints.
 Carbon: 3x0 = x2.
 Hydrogen: 8x0 = 2x3.
 Oxygen: 2x1 = 2x2 + x3.
 Normalize: x0 = 1.

Remark.  Stoichiometric coefficients tend to be small integers;
among first hints suggesting the atomic nature of matter.

x0C3H8 + x1O2   ⇒   x2CO2 + x3H2O

C3H8 + 5O2   ⇒   3CO2 + 4H2O

conservation of mass 
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Kirchoff's Current Law

Ex.  Find current flowing in each branch of a circuit.

Kirchoff's current law.
 10  =  1x0 + 25(x0 - x1) + 50 (x0 - x2).
 0  =  25(x1 - x0) + 30x1 + 1(x1 - x2).
 0  =  50(x2 - x0) + 1(x2 - x1) + 55x2.

Solution.  x0 = 0.2449, x1 = 0.1114, x2 = 0.1166.

x0

x1

x2

conservation of electrical charge
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Upper Triangular System of Equations

Upper triangular system.  aij = 0 for i > j.

Back substitution.  Solve by examining equations in reverse order.
 Equation 2:  x2 = 24/12  =  2.
 Equation 1:  x1 = 4 - x2  =  2.
 Equation 0:  x0 = (2 - 4x1  + 2x2) / 2  =  -1.

for (int i = N-1; i >= 0; i--) {
   double sum = 0.0;
   for (int j = i+1; j < N; j++)
      sum += A[i][j] * x[j];
   x[i] = (b[i] - sum) / A[i][i];
}

! 

xi =
1

aii
bi " aij x j
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2 x0 + 4 x1 - 2 x2 = 2  
0 x0 + 1 x1 + 1 x2 = 4  
0 x0 + 0 x1 + 12 x2 = 24  
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Gaussian Elimination

Gaussian elimination.
 Among oldest and most widely used solutions.
 Repeatedly apply row operations to make system upper triangular.
 Solve upper triangular system by back substitution.

Elementary row operations.
 Exchange row p and row q.
 Add a multiple α of row p to row q.

Key invariant.   Row operations preserve solutions.
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0 x0 + 1 x1 + 1 x2 = 4  

2 x0 + 4 x1 - 2 x2 = 2  
0 x0 + 3 x1 + 15 x2 = 36  

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 1 x1 + 1 x2 = 4  
0 x0 + 3 x1 + 15 x2 = 36  

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 1 x1 + 1 x2 = 4  
0 x0 + 0 x1 + 12 x2 = 24  

(interchange row 0 and 1)

(subtract 3x row 1 from row 2)

Gaussian Elimination:  Row Operations

Elementary row operations.
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Forward elimination.  Apply row operations to make upper triangular.

Pivot.  Zero out entries below pivot app.

for (int p = 0; p < N; p++) {
   for (int i = p + 1; i < N; i++) {
      double alpha = A[i][p] / A[p][p];
      b[i] -= alpha * b[p];
      for (int j = p; j < N; j++)
         A[i][j] -= alpha * A[p][j];
   }
}

! 

aij = aij "
aip

app
apj

bi = bi "
aip

app
bp

 Gaussian Elimination:  Forward Elimination
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Forward elimination.  Apply row operations to make upper triangular.

Pivot.  Zero out entries below pivot app.

 Gaussian Elimination:  Forward Elimination
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for (int p = 0; p < N; p++) {
   for (int i = p + 1; i < N; i++) {
      double alpha = A[i][p] / A[p][p];
      b[i] -= alpha * b[p];
      for (int j = p; j < N; j++)
         A[i][j] -= alpha * A[p][j];
   }
}
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Gaussian Elimination Example

-6 x3+0 x2 3=+1 x1+-2 x0

9 x3+1 x2 4=+1 x1+1 x0

4 x3+1 x2 1=+0 x1+1 x0

7 x3+1 x2 2=+-1 x1+2 x0
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Gaussian Elimination Example

-6 x3+0 x2 3=+1 x1+-2 x0

9 x3+1 x2 4=+1 x1+1 x0

4 x3+1 x2 1=+0 x1+1 x0

7 x3+1 x2 2=+-1 x1+2 x0 -1 x3+-1 x2 0=+-1 x1+0 x0

2 x3+2 x2 5=+1 x1+0 x0

5 x3+0 x2 3=+1 x1+0 x0
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Gaussian Elimination Example

2 x3+2 x2 5=+1 x1+0 x0

5 x3+0 x2 3=+1 x1+0 x0

4 x3+1 x2 1=+0 x1+1 x0

-1 x3+-1 x2 0=+-1 x1+0 x0

1 x3+1 x2 5=+0 x1+0 x0

4 x3+-1 x2 3=+0 x1+0 x0
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Gaussian Elimination Example

1 x3+1 x2 5=+0 x1+0 x0

4 x3+-1 x2 3=+0 x1+0 x0

4 x3+1 x2 1=+0 x1+1 x0

-1 x3+-1 x2 0=+-1 x1+0 x0

5 x3+0 x2 8=+0 x1+0 x0

23

Gaussian Elimination Example

1 x3+1 x2 5=+0 x1+0 x0

5 x3+0 x2 8=+0 x1+0 x0

4 x3+1 x2 1=+0 x1+1 x0

-1 x3+-1 x2 0=+-1 x1+0 x0

x3  =      8/5
x2   =  5 - x3 =    17/5
x1   =  0 - x2 - x3 =  -25/5
x0  =  1 - x2 - 4x3 =  -44/5
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Gaussian Elimination:  Partial Pivoting

Remark.  Previous code fails spectacularly if pivot app = 0.

15 x3+3 x1 33=+0 x0

0 x3+1 x1 1=+1 x0

-2 x3+2 x1 -2=+2 x0

15 x3+3 x1 33=+0 x0

0 x3+1 x1 1=+1 x0

-2 x3+0 x1 -4=+0 x0

Inf x3+Nan x1 Inf=+0 x0

0 x3+1 x1 1=+1 x0

-2 x3+0 x1 -4=+0 x0
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Gaussian Elimination:  Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in
column p among rows i below the diagonal.

Q. What if pivot app = 0 while partial pivoting?
A.  System has no solutions or infinitely many solutions.

// find pivot row
int max = p;
for (int i = p + 1; i < N; i++)
if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
   max = i;

// swap rows p and max
double[] T = A[p]; A[p] = A[max]; A[max] = T;
double   t = b[p]; b[p] = b[max]; b[max] = t;
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Gaussian Elimination with Partial Pivoting

public static double[] lsolve(double[][] A, double[] b) {
   int N = b.length;

   // Gaussian elimination
   for (int p = 0; p < N; p++) {

      // partial pivot
      int max = p;
      for (int i = p+1; i < N; i++)
          if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
             max = i;
      double[] T = A[p]; A[p] = A[max]; A[max] = T;
      double   t = b[p]; b[p] = b[max]; b[max] = t;

      // zero out entries of A and b using pivot A[p][p]
      for (int i = p+1; i < N; i++) {
         double alpha = A[i][p] / A[p][p];
         b[i] -= alpha * b[p];
         for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j];
      }
   }

   // back substitution
   double[] x = new double[N];
   for (int i = N-1; i >= 0; i--) {
      double sum = 0.0;
      for (int j = i+1; j < N; j++)
         sum += A[i][j] * x[j];
      x[i] = (b[i] - sum) / A[i][i];
   }
   return x;
}

~ N3/3 additions,
~ N3/3 multiplications

~ N2/2 additions,
~ N2/2 multiplications
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Stability and Conditioning
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Numerically-Unstable Algorithms

Stability.  Algorithm fl(x) for computing f(x) is numerically stable if
fl(x) ≈ f(x+ε) for some small perturbation ε.

Ex 1.  Numerically unstable way to compute

 fl(1.1e-8) = 0.9175.

Note.  Numerically stable formula:

Nearly the right answer to nearly the right problem.

! 

f (x)  =  
1 " cos x

x
2

public static double fl(double x) {
   return (1.0 - Math.cos(x)) / (x* x);
}

true answer ≈ 1/2.

! 

f (x)  =  
2 sin

2
(x /2)

x
2
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Numerically-Unstable Algorithms

Stability.  Algorithm fl(x) for computing f(x) is numerically stable if
fl(x) ≈ f(x+ε) for some small perturbation ε.

Ex 2.  Gaussian elimination (w/o partial pivoting) can fail spectacularly.

Theorem.  Partial pivoting improves numerical stability.

a x0 + 1 x1 = 1  
1 x0 + 2 x1 = 3  

1.01.0partial pivoting

exact

1.00.0no pivoting

x0Algorithm x1

! 

1-3a

1-2a
" 1

! 

1

1-2a
" 1

a = 10-17

Nearly the right answer to nearly the right problem.
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Ill-Conditioned Problems

Conditioning.  Problem is well-conditioned if f(x) ≈ f(x+ε) for all small
perturbation ε.

Ex 1.  arccos() and tan() functions.
 arccos(.99999991) ≈ 0.000425     tan(1.57078) ≈ 6.12490 × 105

 arccos(.99999992) ≈ 0.000400     tan(1.57079) ≈ 1.58058 × 104

Consequence.  The following formula for computing the great circle
distance between (x1, y1) and (x2, y2) is inaccurate for nearby points.

Solution varies gradually as problem varies.

! 

d =  60 arccos(sin x1 sin x2 + cos x1 cos x2 cos(y1 " y2 ) )

very close to 1 when two points are close
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Ill-Conditioned Problems

Conditioning.  Problem is well-conditioned if f(x) ≈ f(x+ε) for all small
perturbation ε.

Ex 2.  Hilbert matrix.
 Tiny perturbation to Hn makes it singular.
 Cannot solve H12 x = b using floating point.

Matrix condition number.  [Turing, 1948]  Widely-used concept for
detecting ill-conditioned linear systems.

Solution varies gradually as problem varies.
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Hilbert matrix
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Numerically Solving an Initial Value ODE

Lorenz attractor.
 Idealized atmospheric model to describe turbulent flow.
 Convective rolls:  warm fluid at bottom, rises to top, cools off,

and falls down.

Solution.  No closed form solution for x(t), y(t), z(t).
Approach.  Numerically solve ODE.

! 

dx
dt

= "10(x+y)

dy

dt
= "xz + 28x " y

dz
dt

= xy " 8
3
z

x = fluid flow velocity
y = ∇ temperature between ascending and descending currents
z = distortion of vertical temperature profile from linearity
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Euler's Method

Euler's method.  [to numerically solve initial value ODE]
 Choose Δt sufficiently small.
 Approximate function at time t by tangent line at t.
 Estimate value of function at time t + Δt according to tangent line.
 Increment time to t + Δt.
 Repeat.

Advanced methods.  Use less computation to achieve desired accuracy.
 4th order Runge-Kutta:  evaluate slope four times per step.
 Variable time step:  automatically adjust timescale Δt.
 See COS 323.

! 

xt+"t = xt +"t dx
dt
(xt ,yt ,zt )

yt+"t = yt +"t dy

dt
(xt ,yt ,zt )

zt+"t = zt +"t dz
dt
(xt ,yt ,zt )
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Lorenz Attractor:  Java Implementation

public class Lorenz {

   public static double dx(double x, double y, double z)
   { return -10*(x - y);     }

   public static double dy(double x, double y, double z)
   { return -x*z + 28*x - y; }

   public static double dz(double x, double y, double z)
   { return x*y – 8*z/3;     }

   public static void main(String[] args) {
      double x = 0.0, y = 20.0, z = 25.0;
      double dt = 0.001;
      StdDraw.setXscale(-25, 25);
      StdDraw.setYscale(  0, 50);
      
      while (true) {
         double xnew = x + dt * dx(x, y, z);
         double ynew = y + dt * dy(x, y, z);
         double znew = z + dt * dz(x, y, z);
         x = xnew; y = ynew; z = znew;
         StdDraw.point(x, z); 
      }
   }
}

Euler's method

plot x vs. z
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The Lorenz Attractor

% java Lorenz

(-25, 0)

(25, 50)
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Butterfly Effect

Experiment.
 Initialize y = 20.01 instead of y = 20.
 Plot original trajectory in blue, perturbed one in magenta.
 What happens?

Ill-conditioning.
 Sensitive dependence on initial conditions.
 Property of system, not of numerical solution approach.

Predictability:  does the flap of a butterfly's wings in Brazil set off a
tornado in Texas? — title of a 1972 talk by Edward Lorenz
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Stability and Conditioning

Accuracy depends on both stability and conditioning.
 Danger:  apply unstable algorithm to well-conditioned problem.
 Danger:  apply stable algorithm to ill-conditioned problem.
 Safe:  apply stable algorithm to well-conditioned problem.

Numerical analysis.  Art and science of designing numerically stable
algorithms for well-conditioned problems.

Lesson 1.  Some algorithms are unsuitable for floating-point computation.
Lesson 2.  Some problems are unsuitable to floating-point computation.


