9. Scientific Computing

Science and engineering challenges.

- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronics design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Common features.

3

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Commercial applications.

- Web search.
- Financial modeling.
- Computer graphics.
- Digital audio and video.
- Natural language processing.
- Architecture walk-throughs.
- Medical diagnostics (MRI, CAT).

2

Introduction to Computer Science · Sedgewick and Wayne · Copyright © 2007 · http://www.cs.Princeton.EDU/IntroCS

Floating Point

IEEE 754 representation.

- . Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.
- Ex. Single precision representation of -0.453125.

sig	ign bit exponent ↓ ↓																			si	gnit ↓	fica	nd									
-	1	0	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-1 125										1/	2	+ 1	L/4	l +	1/	16	=	0.	81:	25											

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

> if (0.1 + 0.2 == 0.3) { /* false */ } if (0.1 + 0.3 == 0.4) { /* true */ }

Financial computing. Calculate 9% sales tax on a 50¢ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

> double a1 = 1.14 * 75; // 85.4999999999999 double a2 = Math.round(a1); // 85 ← you lost 1¢ double b1 = 1.09 * 50; // 54.500000000000 double b2 = Math.round(b1); // 55 - SEC violation(!)

Floating Point

Catastrophic Cancellation

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }

Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt. " — Brian Kernighan and P. J. Plauger

A simple function. $f(x) = \frac{1 - \cos x}{x^2}$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

Catastrophic Cancellation

6

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

A simple function.

 $f(x) = \frac{1 - \cos x}{r^2}$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

IEEE 754 double precision answer

Ariane 5 rocket. [June 4, 1996]

- 10 year, \$7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

9

11

Copyright, Arianespac

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

0 x ₀	+	$1 x_1 + 1 x_2$	=	4		[0	1	1]		[4]
2 x ₀	+	4 x ₁ - 2 x ₂	=	2	<i>A</i> =	2	4	-2,	<i>b</i> =	2
0 × ₀	+	3 x ₁ + 15 x ₂	=	36		[0	3	15]		[36]

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.

• ...

Gaussian Elimination

Chemical Equilibrium

Ex. Combustion of propane.

 $x_0C_3H_8 + x_1O_2 \implies x_2CO_2 + x_3H_2O$

Stoichiometric constraints.

- Carbon: $3x_0 = x_2$. • Hydrogen: $8x_0 = 2x_3$. • Oxygen: $2x_1 = 2x_2 + x_3$. Conservation of mass
- Normalize: x₀ = 1.

$$C_3H_8 + 5O_2 \implies 3CO_2 + 4H_2O$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

- 10 = $1x_0 + 25(x_0 x_1) + 50(x_0 x_2)$.
- 0 = $25(x_1 x_0) + 30x_1 + 1(x_1 x_2)$. • 0 = $50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2$.

conservation of electrical charge

Solution. $x_0 = 0.2449$, $x_1 = 0.1114$, $x_2 = 0.1166$.

Upper triangular system. $a_{ij} = 0$ for i > j.

Back substitution. Solve by examining equations in reverse order.

- Equation 2: x₂ = 24/12 = 2.
- Equation 1: x₁ = 4 x₂ = 2.
- Equation 0: x₀ = (2 4x₁ + 2x₂) / 2 = -1.

for (int i = N-1; i >= 0; i--) {
 double sum = 0.0;
 for (int j = i+1; j < N; j++)
 sum += A[i][j] * x[j];
 x[i] = (b[i] - sum) / A[i][i];
}</pre>

14

16

Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

Gaussian Elimination: Row Operations

Elementary row operations.

0 x ₀	+	1 x ₁	+	1 x ₂	=	4
2 x ₀	+	4 x ₁	-	2 x ₂	=	2
0 x ₀	+	3 x ₁	+	15 x ₂	=	36

(interchange row 0 and 1)

2 x ₀	+	4 x ₁	-	2 x ₂	=	2
0 x ₀	+	1 × ₁	+	1 x ₂	=	4
0 x ₀	+	3 x ₁	+	15 x ₂	=	36

(subtract 3x row 1 from row 2)

2 x ₀ +	4 x ₁ - 2 x ₂	= 2
0 x ₀ +	1 x ₁ + 1 x ₂	= 4
0 x ₀ +	0 x ₁ + 12 x ₂	= 24

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

17

19

```
for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
    for (int j = p; j < N; j++)
        A[i][j] -= alpha * A[p][j];
}</pre>
```

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
2 x ₀	+	-1 x ₁	+	1 x ₂	+	7 x ₃	=	2
-2 x ₀	+	1 × ₁	+	0 x ₂	+	-6 x ₃	=	3
1 × ₀	+	1 × ₁	+	1 x ₂	+	9 x ₃	=	4

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

*	*	*	*	*]		[*	*	*	*	*]		[*	*	*	*	*]		[*	*	*	*	*		[*	*	*	*	*]
*	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*
*	*	*	*	*	⇒	0	*	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*
*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	*	*
*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	0	*

```
for (int p = 0; p < N; p++) {
   for (int i = p + 1; i < N; i++) {
      double alpha = A[i][p] / A[p][p];
      b[i] -= alpha * b[p];
      for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j];
   }
}</pre>
```

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀		-1 × ₁		-1 x ₂		-1 x ₃		0
0 x ₀		1 × ₁		2 x ₂		2 x ₃		5
0 x ₀		$1 \times_1$		0 x ₂		5 x ₃		3

$1 \times_0$	+	0 ×1	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 x ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 x ₀		0 x ₁		1 x ₂		1 × ₃		5
0 x ₀		0 x ₁		-1 x ₂		4 x ₃		3

1 x ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 x ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 x ₀	+	0 x ₁	+	1 x ₂	+	1 x ₃	=	5
0 x ₀		0 ×1		0 x ₂		5 x ₃		8

Gaussian Elimination Example

Gaussian Elimination: Partial Pivoting

22

24

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

1 × ₀	+	1 x ₁	+	0 x ₃	=	1
2 x ₀	+	2 x ₁	+	-2 x ₃	=	-2
0 x ₀	+	3 x ₁	+	15 x ₃	=	33
1 × ₀	+	1 × ₁	+	0 x ₃	=	1
0 x ₀	+ (0 x ₁	+	-2 x ₃	=	-4
0 x ₀	+	3 x ₁	+	15 x ₃	=	33
1 × ₀	+	1 × ₁	+	0 x ₃	=	1
0 x ₀	+	0 x ₁	+	-2 x ₃	=	-4
0 x ₀	+ N	Jan X1	+	$Inf x_3$	=	Inf

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 × ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 × ₀	+	0 ×1	+	1 x ₂	+	1 x ₃	=	5
0 x ₀	+	0 x ₁	+	0 x ₂	+	5 x ₃	=	8

X_3		=	8/5
\mathbf{x}_2	= 5 - x ₃	=	17/5
\mathbf{x}_1^-	$= 0 - x_2 - x_3$	=	-25/5
x ₀	$= 1 - x_2 - 4x_3$	=	-44/5

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

Q. What if pivot $a_{pp} = 0$ while partial pivoting?

A. System has no solutions or infinitely many solutions.

Numerically-Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\varepsilon)$ for some small perturbation ε .

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x* x);
}
```

```
    fl(1.1e-8) = 0.9175.
    true answer ~ 1/2.
```

Note. Numerically stable formula: $f(x) = \frac{2 \sin^2(x/2)}{x^2}$

Stability and Conditioning

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\epsilon)$ for some small perturbation ϵ .

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

a = 10 ⁻¹⁷	Algorithm	×o	x ₁
$a x_0 + 1 x_1 = 1$	no pivoting	0.0	1.0
	partial pivoting	1.0	1.0
	exact	$\frac{1}{12} \approx 1$	$\frac{1-3a}{1-2a} \approx$

Theorem. Partial pivoting improves numerical stability.

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\varepsilon)$ for all small perturbation ε .

Solution varies gradually as problem varies.

Ex 2. Hilbert matrix.

- Tiny perturbation to H_n makes it singular.
- Cannot solve $H_{12} x = b$ using floating point.

 $H_{\star} =$ Hilbert matrix

 $\frac{3a}{2a} \approx 1$

29

31

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\varepsilon)$ for all small perturbation ε .

Solution varies gradually as problem varies.

Ex 1. arccos() and tan() functions.

- $\arccos(.99999991) \approx 0.000425$ $\tan(1.57078) \approx 6.12490 \times 10^5$
- $\arccos(.99999992) \approx 0.000400$ $\tan(1.57079) \approx 1.58058 \times 10^{4}$

Consequence. The following formula for computing the great circle distance between (x_1, y_1) and (x_2, y_2) is inaccurate for nearby points.

 $d = 60 \arccos(\sin x_1 \sin x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2))$

very close to 1 when two points are close

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- . Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

$$\frac{dx}{dt} = -10(x+y)$$
$$\frac{dy}{dt} = -xz + 28x - y$$
$$\frac{dz}{dt} = xy - \frac{8}{3}z$$

x = fluid flow velocity y = ∇ temperature between ascending and descending currents z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(t), z(t). Approach. Numerically solve ODE.

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time t by tangent line at t.
- . Estimate value of function at time t + Δt according to tangent line.
- Increment time to t + Δt .
- 🛯 Repeat.

 $\begin{aligned} x_{t+\Delta t} &= x_t + \Delta t \; \frac{dx}{dt} (x_t, y_t, z_t) \\ y_{t+\Delta t} &= y_t + \Delta t \; \frac{dy}{dt} (x_t, y_t, z_t) \\ z_{t+\Delta t} &= z_t + \Delta t \; \frac{dz}{dt} (x_t, y_t, z_t) \end{aligned}$

Advanced methods. Use less computation to achieve desired accuracy.

- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale ${\boldsymbol{\Delta}} t.$
- See COS 323.

The Lorenz Attractor

Butterfly Effect

Experiment.

}

33

- Initialize y = 20.01 instead of y = 20.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.

- . Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: does the flap of a butterfly's wings in Brazil set off a tornado in Texas? — title of a 1972 talk by Edward Lorenz

35

36

Stability and Conditioning

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating-point computation. Lesson 2. Some problems are unsuitable to floating-point computation.