Universality and Computability

Introduction to Computer Science · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 13, 2009 8:22 PM

7.4 Turing Machines

Alan Turing (1912-1954)

Fundamental Questions

- Q. What is a general-purpose computer?
- Q. Are there limits on the power of digital computers?
- Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

- Princeton == center of universe.
- Hilbert, Gödel, Turing, Church, von Neumann.
- Automata, languages, computability, universality, complexity, logic.

David Hilbert

Kurt Gödel

Alan Turing

 $Alonzo\ Church$

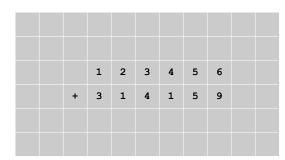
John von Neumar

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.



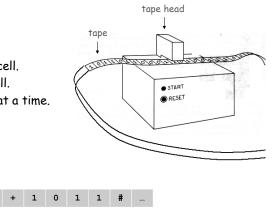
Tape.

- Stores input, output, and intermediate results.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

- Points to one cell of tape.
- Reads a symbol from active cell.
- Writes a symbol to active cell.
- Moves left or right one cell at a time.

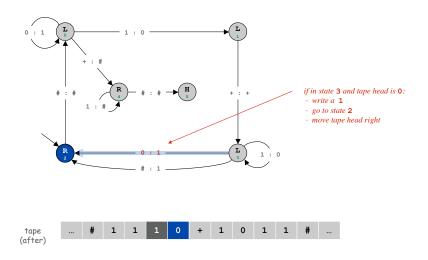
tape head



Turing Machine: States

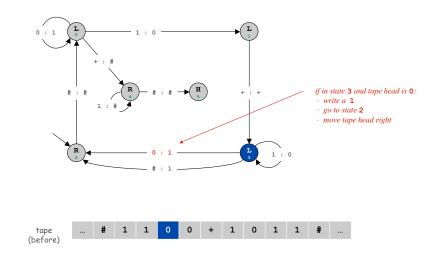
State. What machine remembers.

State transition diagram. Complete description of what machine will do.

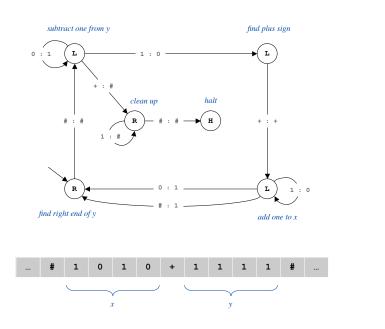


State. What machine remembers.

State transition diagram. Complete description of what machine will do.



Binary Adder



Turing Machine: Initialization and Termination

Initialization. Set input on some portion of tape; set tape head.

Termination. Stop if enter yes, no, or halt state.

infinite loop possible

Program and Data

Data. Sequence of symbols (interpreted one way).

Program. Sequence of symbols (interpreted another way).

machine language

Program and Data

Program and Data

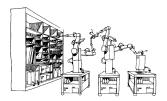
Data. Sequence of symbols (interpreted one way).

Program. Sequence of symbols (interpreted another way).

Ex 2. Self-replication. [von Neumann 1940s]

Print the following statement twice, the second time in quotes.

"Print the following statement twice, the second time in quotes."

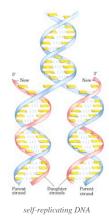


n .

Program and Data

Data. Sequence of symbols (interpreted one way). Program. Sequence of symbols (interpreted another way).

Ex 3. Self-replication. [Watson-Crick 1953]



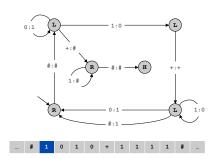
13

7.5 Universality

Program and Data

Data. Sequence of symbols (interpreted one way). Program. Sequence of symbols (interpreted another way).

Ex 4. Turing machine.



graphical representation

text representation

Universal Machines and Technologies

Dell PC

Diebold voting machine

iPod

Printer

Tivo

iMac

Turing machine

TOY

Java language

MS Excel

Quantum computer

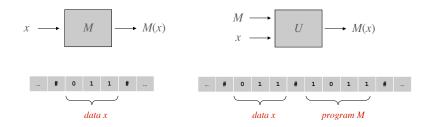
Python language

DNA computer

Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

Universal Turing machine U. Given input tape with x and M, universal Turing machine U outputs M(x).



TM intuition. Software program that solves one particular problem. UTM intuition. Hardware platform that can implement any algorithm.

Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement about the physical world and not subject to proof.

but can be falsified

18

Implications.

- No need to seek more powerful machines or languages.
- Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.

- Java programming.
- Pictures, music, movies, games.
- Email, browsing, downloading files, telephony.
- Word-processing, finance, scientific computing.
- · ..

Again, it [the Analytical Engine] might act upon other things besides numbers... the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent. — Ada Lovelace

even tasks not yet contemplated

when laptop was purchased

Church-Turing Thesis: Evidence

Evidence.

• 7 decades without a counterexample.

Many, many models of computation that turned out to be equivalent.

description
multiple heads, multiple tapes, 2D tape, nondeterminism
method to define and manipulate functions
functions dealing with computation on integers
iterative string replacement rules used by linguists
parallel string replacement rules that model plant growth
Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
registers plus main memory, e.g., TOY, Pentium
cells which change state based on local interactions
compute using superposition of quantum states
compute using biological operations on DNA

22

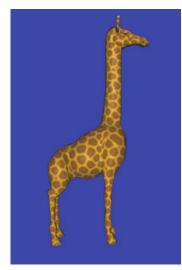
"universal /

Lindenmayer Systems: Synthetic Plants

http://astronomy.swin.edu.au/~pbourke/modelling/plants

7.6 Computability

Cellular Automata: Synthetic Zoo



Reference: Generating textures on arbitrary surfaces using reaction-diffusion by Greg Turk, SIGGRAPH, 1991. History: The chemical basis of morphogenesis by Alan Turing, 1952.

Halting Problem

Halting problem. Write a Java function that reads in a Java function f and its input x, and decides whether f(x) results in an infinite loop.

relates to famous open math conjecture

Ex. Does f(x) terminate?

```
f(6):
6 3 10 5 16 8 4 2 1
f(27):
27 82 41 124 62 31 94 47 142 71 214 107 322 ... 4 2 1
f(-17):
-17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...
```

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.

- Divide all statements into two categories: truths and lies.
- How do we classify the statement: I am lying.

Key element of lying paradox and halting proof: self-reference.

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange (f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

```
f is a string so legal (if perverse)
to use for second input
```

```
public void strange(String f) {
   if (halt(f, f)) {
      // an infinite loop
      while (true) { }
   }
}
```

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Note. halt (f,x) does not go into infinite loop.

We prove by contradiction that halt (f,x) does not exist.

 Reductio ad absurdum: if any logical argument based on an assumption leads to an absurd statement, then assumption is false.

hypothetical halting function

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

Call strange () with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Either way, a contradiction. Hence halt(f,x) cannot exist.

Consequences

- Q. Why is debugging hard?
- A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x?

Totality problem. Give a function f, does it halt on every input x?

No input halting problem. Give a function f with no input, does it halt?

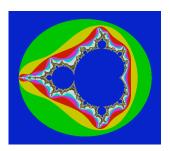
Program equivalence. Do two functions f and always return same value?

Uninitialized variables. Is the variable x initialized before it's used?

Dead code elimination. Does this statement ever get executed?

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given string or picture.



Mandelbrot set (40 lines of code)

More Undecidable Problems

Hilbert's 10th problem.

Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root.

•
$$f(x, y, z) = 6x^3yz^2 + 3xy^2 - x^3 - 10$$
. yes: $f(5, 3, 0) = 0$.

•
$$f(x, y) = x^2 + y^2 - 3$$
. no.

Definite integration. Given a rational function f(x) composed of polynomial and trig functions, does $\int_{-\infty}^{+\infty} f(x) dx$ exist?

•
$$g(x) = \cos x (1 + x^2)^{-1}$$
 yes, $\int_{-\infty}^{+\infty} g(x) dx = \pi/e$.
• $h(x) = \cos x (1 - x^2)^{-1}$ no, $\int_{-\infty}^{+\infty} h(x) dx$ undefined.

33

More Undecidable Problems

Virus identification. Is this program a virus?

Melissa virus March 28, 1999

Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

Principia Mathematics Peano arithmetic Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.

Consistent. Can't prove contradictions like 2 + 2 = 5.

Decidable. Algorithm exists to determine truth of every statement.

- Q. [Hilbert, 1900] Is mathematics complete and consistent?
- A. [Gödel's Incompleteness Theorem, 1931] No!!!
- Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
- A. [Church 1936, Turing 1936] No!

Alan Turing

Alan Turing (1912-1954).

- Father of computer science.
- Computer science's "Nobel Prize" is called the Turing Award.

It was not only a matter of abstract mathematics, not only a play of symbols, for it involved thinking about what people did in the physical world.... It was a play of imagination like that of Einstein or von Neumann, doubting the axioms rather than measuring effects.... What he had done was to combine such a naïve mechanistic picture of the mind with the precise logic of pure mathematics. His machines – soon to be called Turing machines – offered a bridge, a connection between abstract symbols, and the physical world. — John Hodges

Alan Turing (left) Elder brother (right)

Turing's Key Ideas

Turing machine.

formal model of computation

Program and data.

encode program and data as sequence of symbols

Universality.

concept of general-purpose, programmable computers

Church-Turing thesis.

computable at all == computable with a Turing machine

Computability.

inherent limits to computation

Hailed as one of top 10 science papers of 20th century.

Reference: On Computable Numbers, With an Application to the Entscheidungsproblemby A. M. Turing. In Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1936-7), pp.230-265.

38