4.4 Symbol Tables

INTRODUCTION TO

Programming

in Java

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

duction 1o Prog g in Java: An Interdisciplinary Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2008 April 8, 2009 9:51 AM

Symbol Table Applications

phone book look up phone number name phone number
bank process transaction account number transaction details
file share find song to download name of song computer ID
file system find file on disk filename location on disk
dictionary look up word word definition
web search find relevant documents keyword list of documents
book index find relevant pages keyword list of pages
web cache download filename file contents
genomics find markers DNA string known positions
DNS find IP address given URL URL IP address
reverse DNS find URL given IP address IP address URL
compiler find properties of variable variable name value and type
routing table route Internet packets destination best route

Symbol Table

Symbol table. Key-value pair abstraction.
« Insert a key with specified value.
« Given a key, search for the corresponding value

Ex. [DNS lookup]
« Insert URL with specified IP address.
« Given URL, find corresponding IP address.

URL IP address

WWw.Cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

WWW . Simpsons.com 209.052.165.60
key value

Symbol Table APT

public class ST<Key extends Comparable<Key>, Value>

STO create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table
boolean contains(Key key) is there a value paired with key?

public static void main(String[] args) {

ST<String, String> st = new ST<String, String>();

st.put ("www.cs.princeton.edu", "128.112
st.put ("www.princeton.edu", "128.112
st.put("www.yale.edu", "130.132

N st["www.yale.com"] = "209.052.165.60"

StdOut.println(st.get ("www.cs.princeton
StdOut.println(st.get ("www.harvardsucks
StdOut.println(st.get ("www.yale.edu")) ;

} N st["www.yale.edu"]

-GG AT 2
o 26 L ALE) 2
.143.21");

.edu")) ;
.com")) ;

128.112.136.11
null
130.132.143.21

Symbol Table Client: Frequency Counter Datasets

Frequency counter. [e.g., web traffic analysis, linguistic analysis] Linguistic analysis. Compute word frequencies in a piece of text.
« Read in a key.
« If key is in symbol table, increment counter by one;
If key is not in symbol table, insert it with count = 1.

Reference: Wortschatz corpus, Univesitit Leipzig

http://corpora.informatik.uni-leipzig.de

Zipf's Law Zipf's Law
Linguistic analysis. Compute word frequencies in a piece of text. Linguistic analysis. Compute word frequencies in a piece of text.
Zipf's law. In natural language, frequency of i most common word Zipf's law. In natural language, frequency of i most common word
is inversely proportional to i. is inversely proportional to i.
e.g., most frequent word occurs about twice e.g., most frequent word occurs about twice

as often as second most frequent one as often as second most frequent one

Symbol Table: Elementary Implementations

Unordered array.
« Put: add key to the end (if not already there).
« Get: scan through all keys to find desired value.

32 26 47 82 4 20 58 56 14 6 55 %%

Ordered array.
« Put: find insertion point, and shift all larger keys right.
« Get: binary search to find desired key.

4 6 14 20 26 32 47 55 56 58 82 %g@
Cen e« CIECONOEE

Binary Search Trees

Reference: Knuth, The Art of Computer Programming

Symbol Table: Implementations Cost Summary

Unordered array. Hopelessly slow for large inputs.

Ordered array. Acceptable if many more searches than inserts;

too slow if many inserts.

Running Time Frequency Count
e | L L L L [
unordered array 170 sec 41 hr
ordered array log N N 5.8 sec 5.8 min 15 min 2.1hr

Challenge. Make all ops logarithmic.

Binary Search Trees

Def. A binary search tree is a binary tree in symmetric order.

Binary tree is either:
= Empty.
= A key-value pair and two binary trees.

we suppress values from figures

Symmetric order.

= Keys in left subtree are smaller than parent.
« Keys in right subtree are larger than parent.

A

smaller keys

(values hidden)

larger keys

BST Search
successful search unsuccessful search
for a node with key the for a node with key times
- - times is after it
4 0 go to the right

P
the isafter it
50 go to the right

\ 4 S~ times is beforewas
s0 go to the left

the is before was
50 go to the left

the the times is after the
but the right link is null
AR so the BST has no node
success! having that key
13
BST Construction

of [t

key
inserted
i he

times

best

H

worst i

BST Insert

insert times
- times is after it
4~ 50 go to the right
“~_ times is beforewas
50 go to the left
the
~*
™ times is after the
so it goes on the right

the

Binary Search Tree: Java Implementation

To implement: use two links per Node.

A Node is comprised of:)
private class Node {

. A key private Key key;
private Value val;

+ Avale. private Node left;

. A reference to the left subtree. private Node right;

. A reference to the right subtree.

root

|
el
= ER

e

BST: Skeleton BST: Get

BST. Allow generic keys and values. cquires xey to provide comparere () method: Get. Return val corresponding o given key, or null if no such key.
see book for details

17 18
BST: Put BST Implementation: Practice
Put. Associate val with key. Bottom line. Difference between a practical solution and no solution.
. Search, then insert.
« Concise (but tricky) recursive code.
Running Time Frequency Count

Running time per put/get.

depth =
depth =

depth =
depth =

depth =

Worst case. If tree is unbalanced, depth is N.

BST: Analysis

« There are many BSTs that correspond to same set of keys.
» Cost is proportional to depth of node.

N

number of nodes on path from root to node

BST: Analysis

21

23

BST: Analysis

Best case. If tree is perfectly balanced, depth is at most Ig N.

the |

|best| | of ‘ |t1'mes‘ ‘worst|

BST: Analysis

Average case. If keys are inserted in random order,
average depth is 2InN.

requires proof
(see COS 226)

Typical BSTs constructed from randomly ordered keys

Symbol Table: Implementations Cost Summary

BST. Logarithmic time ops if keys inserted in random order.

Running Time Frequency Count

unordered array 170 sec 41hr -

ordered array log N N 58sec 5.8 min 15 min 2.1hr

BST 95sec T7lsec ldsec 69 sec

1 assumes keys inserted in random order

Q. Can we guarantee logarithmic performance?

25

Red-Black Tree

Red-black tree. A clever BST variant that guarantees depth <2 1g N.

see COS 226

Running Time Frequency Count

unordered array 170 sec 41 hr

ordered array log N N 5.8 sec 5.8 min 15 min 2.1hr

BST logN'* log N .95 sec 7.1 sec 14 sec 69 sec

red-black .95 sec 7.0 sec 14 sec 74 sec

T assumes keys inserted in random order

27

Red-Black Tree

Red-black tree. A clever BST variant that guarantees depth <21gN.

see COS 226

import java.util.TreeMap;
import java.util.Iterator;

Java red-black tree library implementation

public class ST<Key extends Comparable<Key>, V?'4e> implements Iterable<Key> {
private TreeMap<Key, Value> st = new TreeMap<Key, Val>() ;

public void put(Key key, Value val) {
if (val == null) st.remove (key) ;
else st.put(key, val);

}

public Value get (Key key)

public Value remove (Key key)

public boolean contains (Key key)

public Iterator<Key> iterator()

return st.get (key) ;

return st.remove (key) ;

return st.containsKey (key) ;
return st.keySet() .iterator() ;

. o o

{
{
{
{

Iteration

Inorder Traversal

Inorder traversal.
« Recursively visit left subtree.
« Visit node.
« Recursively visit right subtree.

inorder: at be do go hi if me no of pi we

29

Enhanced For Loop with BST

BST. Add following code to support enhanced for loop.
see COS 226 for details

31

Enhanced For Loop

Enhanced for loop. Enable client to iterate over items in a collection.

Symbol Table: Summary

Symbol table. Quintessential database lookup data type.
Choices. Ordered array, unordered array, BST, red-black, hash,

. Different performance characteristics.
. Java libraries: TreeMap, HashMap.

Remark. Better symbol table implementation improves all clients.

30

32

