
I/O (cont) and Program Development

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 19, 2009 10:51 AM 2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

what you've
done already

any program you might want to write

Standard Audio

4

Crash Course in Sound

Sound. Perception of the vibration of molecules in our eardrums.

Concert A. Sine wave, scaled to oscillate at 440Hz.
Other notes. 12 notes on chromatic scale, divided logarithmically.

5

Digital Audio

Sampling. Represent curve by sampling it at regular intervals.

audio CD

!

y(i) = sin
2" # i # 440

44,100

$

%
&

'

(
)

6

Standard Audio

Standard audio. Library for playing digital audio.

7

Play That Tune

Goal. Read in pitches and durations from standard input,
and play using standard audio.

8

Warmup: Musical Tone

Musical tone. Create a music tone of a given frequency and duration.

public class Tone {
 public static void main(String[] args) {
 int sps = 44100;
 double hz = Double.parseDouble(args[0]);
 double duration = Double.parseDouble(args[1]);
 int N = (int) (sps * duration);
 double[] a = new double[N+1];
 for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2 * Math.PI * i * hz / sps);
 StdAudio.play(a);
 }
}

!

y(i) = sin
2" # i # hz

44,100

$

%
&

'

(
)

% java Note 440 1.5
[concert A for 1.5 seconds]

9

Play That Tune

Goal. Read in pitches and durations from standard input,
and play using standard audio.

public class PlayThatTune {
 public static void main(String[] args) {
 int sps = 44100;
 while (!StdIn.isEmpty()) {
 int pitch = StdIn.readInt();
 double duration = StdIn.readDouble();
 double hz = 440 * Math.pow(2, pitch / 12.0);
 int N = (int) (sps * duration);
 double[] a = new double[N+1];
 for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2 * Math.PI * i * hz / sps);
 StdAudio.play(a);
 }
 }
 }
}

10

Program Development

Admiral Grace Murray HopperAda Lovelace

11

95% of Program Development

Program development. Creating a program and putting it to good use.
Def. A bug is a mistake in a computer program.

Programming is primarily a process of finding and fixing bugs.

Good news. Can use computer to test program.
Bad news. Cannot use computer to automatically find all bugs.

12

95% of Program Development

Debugging. Cyclic process of editing, compiling, and fixing errors.
 Always a logical explanation.
 What would the machine do?
 Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

 “ If I had eight hours to chop down a tree, I would spend
 six hours sharpening an axe. ” — Abraham Lincoln

 “As soon as we started programming, we found out to our
 surprise that it wasn't as easy to get programs right as we had
 thought. I can remember the exact instant when I realized that
 a large part of my life from then on was going to be spent in
 finding mistakes in my own programs. ” — Maurice Wilkes

13

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Application. Break RSA cryptosystem (factor 200-digit numbers).

3,757,208 = 23 × 7 × 132 × 397

98 = 2 × 72

17 = 17

11,111,111,111,111,111 = 2,071,723 × 5,363,222,357

14

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Brute-force algorithm. For each putative factor i = 2, 3, 4, …,
check if N is a multiple of i, and if so, divide it out.

3757208/8

15

Debugging: 95% of Program Development

Programming. A process of finding and fixing mistakes.
 Compiler error messages help locate syntax errors.
 Run program to find semantic and performance errors.

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0])
 for (i = 0; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ")
 N = N / i

 }
 }
}

this program has many bugs!

as long as i is a
factor, divide it out

check if i
is a factor

16

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0])
 for (i = 0; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ")
 N = N / i

 }
 }
}

% javac Factors.java
Factors.java:4: ';' expected
 for (i = 0; i < N; i++)
 ^
1 error

Debugging: Syntax Errors

Syntax error. Illegal Java program.
 Compiler error messages help locate problem.
 Goal: no errors and a file named Factors.class.

the first error

17

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 0; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ");
 N = N / i;
 }
 }
}

Debugging: Syntax Errors

Syntax error. Illegal Java program.
 Compiler error messages help locate problem.
 Goal: no errors and a file named Factors.class.

syntax (compile-time) errors

need to
declare

variable i

need terminating
semicolons

18

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 0; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ");
 N = N / i;
 }
 }
}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
 Run program to identify problem.
 Add print statements if needed to produce trace.

% javac Factors.java
% java Factors
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factors.main(Factors.java:5)

oops, no argument

19

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 0; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ");
 N = N / i;
 }
 }
}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
 Run program to identify problem.
 Add print statements if needed to produce trace.

% javac Factors.java
% java Factors 98
Exception in thread "main"
java.lang.ArithmeticExeption: / by zero
 at Factors.main(Factors.java:8)

need to start at 2
because 0 and 1

cannot be factors

20

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N; i++) {
 while (N % i == 0)
 System.out.print(i + " ");
 N = N / i;
 }
 }
}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
 Run program to identify problem.
 Add print statements if needed to produce trace.

% javac Factors.java
% java Factors 13
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 … infinite loop!

indents do not
imply braces

21

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N; i++) {
 while (N % i == 0) {
 System.out.print(i + " ");
 N = N / i;
 }
 }
 }
}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 × 72.
 But that doesn't mean it works for all inputs.
 Add trace to find and fix (minor) problems.

% java Factors 98
2 7 7 %

% java Factors 5

% java Factors 6
2 %

need newline

??? no output

??? missing the 3
22

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N; i++) {
 while (N % i == 0) {
 System.out.println(i + " ");
 N = N / i;
 }
 System.out.println("TRACE: " + i + " " + N);
 }
 }
}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 × 72.
 But that doesn't mean it works for all inputs.
 Add trace to find and fix (minor) problems.

% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5

% java Factors 6
2
TRACE 2 3

Aha!
i loop should
go up to N

23

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i <= N; i++) {
 while (N % i == 0) {
 System.out.print(i + " ");
 N = N / i;
 }
 }
 System.out.println();
 }
}

Success. Program now seems to work.

Debugging: Success?

% java Factors 5
5

% java Factors 6
2 3

% java Factors 98
2 7 7

% java Factors 3757208
2 2 2 7 13 13 397

24

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i <= N; i++) {
 while (N % i == 0) {
 System.out.print(i + " ");
 N = N / i;
 }
 }
 System.out.println();
 }
}

Performance error. Correct program, but too slow.

Debugging: Performance Error

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723

very long wait
(with a surprise ending)

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 …

25

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i <= N/i; i++) {
 while (N % i == 0) {
 System.out.print(i + " ");
 N = N / i;
 }
 }
 System.out.println();
 }
}

Performance error. Correct program, but too slow.

Solution. Improve or change underlying algorithm.

Debugging: Performance Error

fixes performance error:
if N has a factor, it has one

less than or equal to its square root

% java Factors 98
2 7 7

% java Factors 11111111
11 73 101

% java Factors 11111111111111
11 239 4649

% java Factors 11111111111111111
2071723

missing last factor
(sometimes)

26

public class Factors {
 public static void main(String[] args) {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i <= N/i; i++) {
 while (N % i == 0) {
 System.out.print(i + " ");
 N = N / i;
 }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

Caveat. Optimizing your code tends to introduce bugs.
Lesson. Don't optimize until it's absolutely necessary.

Debugging: Performance Error

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 5363222357

need special case to print
biggest factor

(unless it occurs more than once)

"corner case"

27

Q. How large an integer can I factor?

Note. Can't break RSA this way (experts are still trying).

% java Factors 3757208
2 2 2 7 13 13 397

% java Factors 9201111169755555703
9201111169755555703

Program Development: Analysis

† estimated

 largest factor 3 instant

digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i <= N/i)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of
computing….

28

Debugging

Programming. A process of finding and fixing mistakes.

1. Create the program.

2. Compile it.
Compiler says: That’s not a legal program.
Back to step 1 to fix syntax errors.

3. Execute it.
Result is bizarrely (or subtly) wrong.
Back to step 1 to fix semantic errors.

4. Enjoy the satisfaction of a working program!

5. Too slow? Back to step 1 to try a different algorithm.

29

U.S.S. Grace Murray Hopper

