
1.4 Arrays

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 9, 2009 8:04 AM 2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

conditionals and loops

Math text I/O

assignment statementsprimitive data types

store and manipulate
huge quantities of data

3

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.
 52 playing cards in a deck.
 5 thousand undergrads at Princeton.
 1 million characters in a book.
 10 million audio samples in an MP3 file.
 4 billion nucleotides in a DNA strand.
 73 billion Google queries per year.
 50 trillion cells in the human body.
 6.02 × 1023 particles in a mole.

wayne0

doug1

rs2

maia3

mona4

cbienia5

wkj6

mkc7

index value

4

Many Variables of the Same Type

Goal. 10 variables of the same type.

// tedious and error-prone
double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0 = 0.0;
a1 = 0.0;
a2 = 0.0;
a3 = 0.0;
a4 = 0.0;
a5 = 0.0;
a6 = 0.0;
a7 = 0.0;
a9 = 0.0;
a9 = 0.0;

double x = a4 + a8;

5

Arrays in Java

Java has special language support for arrays.
 To make an array: declare, create, and initialize it.
 To access element i of array named a, use a[i].
 Array indices start at 0.

int N = 10;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
 a[i] = 0.0; // all to 0.0

6

Arrays in Java

Java has special language support for arrays.
 To make an array: declare, create, and initialize it.
 To access element i of array named a, use a[i].
 Array indices start at 0.

Compact alternative.
 Declare, create, and initialize in one statement.
 Default initialization: all numbers automatically set to zero.

int N = 10;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
 a[i] = 0.0; // all to 0.0

int N = 10;
double[] a = new double[N]; // declare, create, init

7

Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot
product is the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };
double[] y = { 0.5, 0.1, 0.4 };
double sum = 0.0;
for (int i = 0; i < N; i++) {
 sum += x[i]*y[i];
}

8

Array Processing Code

Shuffling a Deck

10

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank = {
 "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace"
};

String[] suit = {
 "Clubs", "Diamonds", "Hearts", "Spades"
};

int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3

System.out.println(rank[i] + " of " + suit[j]);

11

Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

Q. In what order does it output them?

A. B.

String[] deck = new String[52];
for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

typical array processing
code changes values

at runtime

two of clubs
two of diamonds
two of hearts
two of spades
three of clubs
...

two of clubs
three of clubs
four of clubs
five of clubs
six of clubs
...

12

Shuffling

Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.
 In iteration i, pick random card from deck[i] through deck[N-1],

with each card equally likely.
 Exchange it with deck[i].

int N = deck.length;
for (int i = 0; i < N; i++) {
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
}

between i and N-1swap
idiom

13

Shuffling a Deck of Cards

public class Deck {
 public static void main(String[] args) {
 String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };
 String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace" };
 int SUITS = suit.length;
 int RANKS = rank.length;
 int N = SUITS * RANKS;

 String[] deck = new String[N];
 for (int i = 0; i < RANKS; i++)
 for (int j = 0; j < SUITS; j++)
 deck[SUITS*i + j] = rank[i] + " of " + suit[j];

 for (int i = 0; i < N; i++) {
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
 }

 for (int i = 0; i < N; i++)
 System.out.println(deck[i]);
 }
}

avoid "hardwired" constants

build the deck

shuffle

print shuffled deck

14

Shuffling a Deck of Cards

% java Deck
5 of Clubs
Jack of Hearts
9 of Spades
10 of Spades
9 of Clubs
7 of Spades
6 of Diamonds
7 of Hearts
7 of Clubs
4 of Spades
Queen of Diamonds
10 of Hearts
5 of Diamonds
Jack of Clubs
Ace of Hearts
...
5 of Spades

% java Deck
10 of Diamonds
King of Spades
2 of Spades
3 of Clubs
4 of Spades
Queen of Clubs
2 of Hearts
7 of Diamonds
6 of Spades
Queen of Spades
3 of Spades
Jack of Diamonds
6 of Diamonds
8 of Spades
9 of Diamonds
...
10 of Spades

Coupon Collector

16

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many
do you have to collect before you have (at least) one of each type?

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.
Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found[i] is true if we've already
 collected a card of type i.

assuming each possibility is equally
likely for each card that you collect

17

Coupon Collector: Java Implementation

public class CouponCollector {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int cardcnt = 0; // number of cards collected
 int valcnt = 0; // number of distinct cards

 // do simulation
 boolean[] found = new boolean[N];
 while (valcnt < N) {
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val]) {
 valcnt++;
 found[val] = true;
 }
 }

 // all N distinct cards found
 System.out.println(cardcnt);
 }
}

type of next card
(between 0 and N-1)

18

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

Challenge. Debugging with arrays requires tracing many variables.

19

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many
do you have to collect before you have (at least) one of each type?

Fact. About N (1 + 1/2 + 1/3 + … + 1/N).

Ex. N = 30 baseball teams. Expect to wait ≈ 120 years before all
teams win a World Series.

under idealized assumptions

see ORF 245 or COS 341

20

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics
as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need to be
examined before all values are found against the corresponding answer
for a random sequence.

Multidimensional Arrays

22

Two Dimensional Arrays

Two dimensional arrays.
 Table of data for each experiment and outcome.
 Table of grades for each student and assignments.
 Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

23

Two Dimensional Arrays in Java

Array access. Use a[i][j] to access element in row i and column j.

Zero-based indexing. Row and column indices start at 0.

int M = 10;
int N = 3;
double[][] a = new double[M][N];
for (int i = 0; i < M; i++) {
 for (int j = 0; j < N; j++) {
 a[i][j] = 0.0;
 }
}

24

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

 double[][] p =
 {
 { .02, .92, .02, .02, .02 },
 { .02, .02, .32, .32, .32 },
 { .02, .02, .02, .92, .02 },
 { .92, .02, .02, .02, .02 },
 { .47, .02, .47, .02, .02 },
 };

25

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

26

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i][j] is the dot product of
the ith row of a and the jth column of b.

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

all values initialized to 0

27

Array Challenge 2

Q. How many scalar multiplications multiply two N-by-N matrices?

A. N B. N2 C. N3 D. N4

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

Self-Avoiding Walk

29

Self-Avoiding Walk

Model.
 N-by-N lattice.
 Start in the middle.
 Randomly move to a neighboring intersection,

avoiding all previous intersections.

Applications. Polymers, statistical mechanics, etc.

Q. What fraction of time will you escape in an 5-by-5 lattice?
Q. In an N-by-N lattice?
Q. In an N-by-N-by-N lattice?

30

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]); // lattice size
 int T = Integer.parseInt(args[1]); // number of trials
 int deadEnds = 0; // trials resulting in dead end

 for (int t = 0; t < T; t++) {
 boolean[][] a = new boolean[N][N]; // intersections visited
 int x = N/2, y = N/2; // current position

 while (x > 0 && x < N-1 && y > 0 && y < N-1) {

 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1]) {
 deadEnds++;
 break;
 }

 a[x][y] = true; // mark as visited

 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }

 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

take a random unvisited step

dead end

31

Self-Avoiding Walks

32

Summary

Arrays.
 Organized way to store huge quantities of data.
 Almost as easy to use as primitive types.
 Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

1.5

