
1.3 Conditionals and Loops

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 10, 2009 10:07 PM
2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

equivalent
to a calculator

any program you might want to write

3

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

to infinity
and beyond!

conditionals and loops

Math text I/O

assignment statementsprimitive data types

4

Control Flow

Control flow.

! Sequence of statements that are actually executed in a program.

! Conditionals and loops: enable us to choreograph control flow.

statement 2

statement 1

statement 4

statement 3 boolean 2
true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control flow control flow with conditionals and loops

Conditionals

6

If Statement

The if statement. A common branching structure.

! Evaluate a boolean expression.

! If true, execute some statements.

! If false, execute other statements.

if (boolean expression) {
 statement T;
}

else {

 statement F;
}

can be any sequence
of statements

statement T

true false

boolean expression

statement F

7

If Statement

The if statement. A common branching structure.

! Evaluate a boolean expression.

! If true, execute some statements.

! If false, execute other statements.

8

If Statement

Ex. Take different action depending on value of variable.

public class Flip {

 public static void main(String[] args) {

 if (Math.random() < 0.5) System.out.println("Heads");

 elseMath.random() < 0.5) System.out.println("Tails");

 }

}

% java Flip

Heads

% java Flip

Heads

% java Flip

Tails

% java Flip

Heads

9

If Statement Examples

10

The While Loop

11

While Loop

The while loop. A common repetition structure.

! Evaluate a boolean expression.

! If true, execute some statements.

! Repeat.

while (boolean expression) {
 statement 1;
 statement 2;
} statement 1

true

false

boolean expression

statement 2

loop body

loop continuation condition

12

While Loop: Powers of Two

Ex. Print powers of 2 that are ! 2N.

! Increment i from 0 to N.

! Double v each time.

Click for demo

int i = 0;

int v = 1;

while (i <= N) {
 System.out.println(i + " " + v);

 i = i + 1;

 v = 2 * v;

}

0 1

1 2

2 4

3 8

4 16

5 32

6 64

0 1

i v

1 2

2 4

3 8

true

i <= N

true

true

true

4 16

5 32

6 64

7 128

true

true

true

false

N = 6

13

Powers of Two

public class PowersOfTwo {

 public static void main(String[] args) {

 // last power of two to print

 int N = Integer.parseInt(args[0]);

 int i = 0; // loop control counter

 int v = 1; // current power of two

 while (i <= N) {

 System.out.println(i + " " + v);

 i = i + 1;

 v = 2 * v;

 }

 }

}

% java PowersOfTwo 4

0 1

1 2

2 4

3 8

% java PowersOfTwo 6

0 1

1 2

2 4

3 8

4 16

5 32

6 64
print i and ith power of two

14

While Loop Challenge

Q. Anything wrong with the following code for printing powers of 2?

int i = 0;

int v = 1;

while (i <= N)
 System.out.println(i + " " + v);

 i = i + 1;

 v = 2 * v;

16

A Wonderful Square Root

Copyright 2004, Sidney Harris, http://www.sciencecartoonsplus.com

% java Sqrt 60481729

7777.0

17

While Loops: Square Root

Q. How might we implement Math.sqrt() ?

A. To compute the square root of c:

! Initialize t0 = c.

! Repeat until ti = c / ti, up to desired precision:

set ti+1 to be the average of ti and c / ti.

!

t0 = 2.0

t1 = 1
2
(t0 + 2

t0
) = 1.5

t2 = 1
2
(t1 + 2

t1
) = 1.416666666666665

t3 = 1
2
(t2 + 2

t2
) = 1.4142156862745097

t4 = 1
2
(t3 + 2

t3
) = 1.4142135623746899

t5 = 1
2
(t4 + 2

t4
) = 1.414213562373095

computing the square root of 2

18

public class Sqrt {

 public static void main(String[] args) {

 double epsilon = 1e-15;

 double c = Double.parseDouble(args[0]);

 double t = c;

 while (Math.abs(t - c/t) > t*epsilon) {

 t = (c/t + t) / 2.0;

 }

 System.out.println(t);

 }

}
% java Sqrt 2.0

1.414213562373095

relative error
tolerance

15 decimal digits of accuracy in 5 iterations

While Loops: Square Root

Q. How might we implement Math.sqrt() ?

A. To compute the square root of c:

! Initialize t0 = c.

! Repeat until ti = c / ti, up to desired precision:

set ti+1 to be the average of ti and c / ti.

19

Square root method explained.

! Goal: find root of any function f(x).

! Start with estimate t0.

! Draw line tangent to curve at x= ti.

! Set ti+1 to be x-coordinate where line hits x-axis.

! Repeat until desired precision.

Caveat. f(x) must be smooth; t0 must be good estimate.

Newton-Raphson Method

f(x) = x2 - c to compute "c

20

The For Loop

Copyright 2004, FoxTrot by Bill Amend
www.ucomics.com/foxtrot/2003/10/03

21

For Loops

The for loop. Another common repetition structure.

! Execute initialization statement.

! Evaluate a boolean expression.

! If true, execute some statements.

! And then the increment statement.

! Repeat.

for (init; boolean expression; increment) {
 statement 1;
 statement 2;
}

statement 1
true

false

boolean expression

statement 2

init

increment

body

loop continuation condition

22

Anatomy of a For Loop

Q. What does it print?

A.

23

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.

! Initialize ruler to " ".

! For each value i from 1 to N:

sandwich two copies of ruler on either side of i.

public class RulerN {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 String ruler = " ";

 for (int i = 1; i <= N; i++) {

 ruler = ruler + i + ruler;

 }

 System.out.println(ruler);

 }

}

1 " 1 "

i ruler

2 " 1 2 1 "

3 " 1 2 1 3 1 2 1 "

" "

24

Observation. Loops can produce a huge amount of output!

% java RulerN 1

 1

% java RulerN 2

 1 2 1

% java RulerN 3

 1 2 1 3 1 2 1

% java RulerN 4

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java RulerN 5

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java RulerN 100

Exception in thread "main"

java.lang.OutOfMemoryError

For Loops: Subdivisions of a Ruler

25

Loop Examples

26

Nesting

27

Nesting Conditionals and Loops

Conditionals enable you to do one of 2n

sequences of operations with n lines.

More sophisticated programs.

! Nest conditionals within conditionals.

! Nest loops within loops.

! Nest conditionals within loops within loops.

if (a0 > 0) System.out.print(0);

if (a1 > 0) System.out.print(1);

if (a2 > 0) System.out.print(2);

if (a3 > 0) System.out.print(3);

if (a4 > 0) System.out.print(4);

if (a5 > 0) System.out.print(5);

if (a6 > 0) System.out.print(6);

if (a7 > 0) System.out.print(7);

if (a8 > 0) System.out.print(8);

if (a9 > 0) System.out.print(9);

Loops enable you to do an operation

n times using only 2 lines of code.

double sum = 0.0;

for (int i = 1; i <= 1024; i++)

 sum = sum + 1.0 / i;

210 = 1024 possible results, depending on input

computes 1/1 + 1/2 + ... + 1/1024

28

Nested If Statements

Ex. Pay a certain tax rate depending on income level.

double rate;

if (income < 47450) rate = 0.22;

else if (income < 114650) rate = 0.25;

else if (income < 174700) rate = 0.28;

else if (income < 311950) rate = 0.33;

else if (income < 311950) rate = 0.35;

graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

5 mutually exclusive
alternatives

29

Nested If Statements

is shorthand for

Be careful when nesting if-else statements. (See Q+A on p. 75.)

if (income < 47450) rate = 0.22;

else if (income < 114650) rate = 0.25;

else if (income < 174700) rate = 0.28;

else if (income < 311950) rate = 0.33;

else if (income < 311950) rate = 0.35;

if (income < 47450) rate = 0.22;

else {

 if (income < 114650) rate = 0.25;

 else {

 if (income < 174700) rate = 0.28;

 else {

 if (income < 311950) rate = 0.33;

 else if (income < 311950) rate = 0.35;

 }

 }

}

30

Nested If Statement Challenge

Q. Anything wrong with the following for income tax calculation?

double rate = 0.35;

if (income < 47450) rate = 0.22;

if (income < 114650) rate = 0.25;

if (income < 174700) rate = 0.28;

if (income < 311950) rate = 0.33;

wrong graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

31

Monte Carlo Simulation

32

Gambler's Ruin

Gambler's ruin. Gambler starts with $stake and places $1 fair bets

until going broke or reaching $goal.

! What are the chances of winning?

! How many bets will it take?

One approach. Monte Carlo simulation.

! Flip digital coins and see what happens.

! Repeat and compute statistics.

33

public class Gambler {

 public static void main(String[] args) {

 int stake = Integer.parseInt(args[0]);

 int goal = Integer.parseInt(args[1]);

 int T = Integer.parseInt(args[2]);

 int wins = 0;

 System.out.println(wins + " wins of " + T);

 }

}

// repeat experiment N times

for (int t = 0; t < T; t++) {

}

// do one gambler's ruin experiment

int cash = stake;

while (cash > 0 && cash < goal) {

}

if (cash == goal) wins++;

// flip coin and update

if (Math.random() < 0.5) cash++;

else cash--;

Gambler's Ruin

34

Digression: Simulation and Analysis

Fact. [see ORF 309] Probability of winning = stake ÷ goal.

Fact. [see ORF 309] Expected number of bets = stake # desired gain.

Ex. 20% chance of turning $500 into $2500,

but expect to make one million $1 bets.

Remark. Both facts can be proved mathematically; for more complex

scenarios, computer simulation is often the best plan of attack.

% java Gambler 5 25 1000

191 wins of 1000

% java Gambler 5 25 1000

203 wins of 1000

% java Gambler 500 2500 1000

197 wins of 1000

stake goal T

after a substantial wait….

500/2500 = 20%

500 * (2500 - 500) = 1 million

35

Control Flow Summary

Control flow.

! Sequence of statements that are actually executed in a program.

! Conditionals and loops: enables us to choreograph the control flow.

straight-line
programs

all statements are
executed in the order given

conditionals
certain statements are

executed depending on the
values of certain variables

if

if-else

loops
certain statements are

executed repeatedly until
certain conditions are met

while

for

do-while

Control Flow Description Examples

1.4

36

Program Development

Admiral Grace Murray HopperAda Lovelace

37

95% of Program Development

Program development. Creating a program and putting it to good use.

Def. A bug is a mistake in a computer program.

Programming is primarily a process of finding and fixing bugs.

Good news. Can use computer to test program.

Bad news. Cannot use computer to automatically find all bugs.

38

95% of Program Development

Debugging. Cyclic process of editing, compiling, and fixing errors.

! Always a logical explanation.

! What would the machine do?

! Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

 “ If I had eight hours to chop down a tree, I would spend

 six hours sharpening an axe. ” — Abraham Lincoln

 “As soon as we started programming, we found out to our

 surprise that it wasn't as easy to get programs right as we had

 thought. I can remember the exact instant when I realized that

 a large part of my life from then on was going to be spent in

 finding mistakes in my own programs. ” — Maurice Wilkes

39

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Application. Break RSA cryptosystem (factor 200-digit numbers).

3,757,208 = 23 # 7 # 132 # 397

98 = 2 # 72

17 = 17

11,111,111,111,111,111 = 2,071,723 # 5,363,222,357

40

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Brute-force algorithm. For each putative factor i = 2, 3, 4, …,

check if N is a multiple of i, and if so, divide it out.

3757208/8

41

Debugging: 95% of Program Development

Programming. A process of finding and fixing mistakes.

! Compiler error messages help locate syntax errors.

! Run program to find semantic and performance errors.

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0])

 for (i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ")

 N = N / i

 }

 }

}

this program has many bugs!

as long as i is a
factor, divide it out

check if i
is a factor

42

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0])

 for (i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ")

 N = N / i

 }

 }

}

% javac Factors.java

Factors.java:6: ';' expected

 for (i = 2; i < N; i++)

 ^

1 error

Debugging: Syntax Errors

Syntax error. Illegal Java program.

! Compiler error messages help locate problem.

! Goal: no errors and a file named Factors.class.

the first error

43

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

Debugging: Syntax Errors

Syntax error. Illegal Java program.

! Compiler error messages help locate problem.

! Goal: no errors and a file named Factors.class.

syntax (compile-time) errors

need to
declare

variable i

need terminating
semicolons

44

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.

! Run program to identify problem.

! Add print statements if needed to produce trace.

% javac Factors.java

% java Factors

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 0

 at Factors.main(Factors.java:5)

oops, no argument

45

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.

! Run program to identify problem.

! Add print statements if needed to produce trace.

% javac Factors.java

% java Factors 98

Exception in thread "main"

java.lang.ArithmeticExeption: / by zero

 at Factors.main(Factors.java:8)

need to start at 2
because 0 and 1

cannot be factors

46

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.

! Run program to identify problem.

! Add print statements if needed to produce trace.

% javac Factors.java

% java Factors 98

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 … infinite loop!

indents do not
imply braces

47

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i < N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 }

}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 # 72.

! But that doesn't mean it works for all inputs.

! Add trace to find and fix (minor) problems.

% java Factors 98

2 7 %

% java Factors 5

% java Factors 6

2 %

need newline

??? no output

??? missing the 3

48

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i < N; i++) {

 while (N % i == 0) {

 System.out.println(i + " ");

 N = N / i;

 }

 System.out.println("TRACE: " + i + " " + N);

 }

 }

}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 # 72.

! But that doesn't mean it works for all inputs.

! Add trace to find and fix (minor) problems.
% java Factors 5

TRACE 2 5

TRACE 3 5

TRACE 4 5

% java Factors 6

2

TRACE 2 3

Aha!
Print out N

after for loop
(if it is not 1)

49

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i < N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Success. Program seems to work.

Debugging: Success?

"corner case"

% java Factors 5

5

% java Factors 6

2 3

% java Factors 98

2 7 7

% java Factors 3757208

2 2 2 7 13 13 397

50

Performance error. Correct program, but too slow.

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i < N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Debugging: Performance Error

% java Factors 11111111

11 73 11 137

% java Factors 11111111111

21649 51329

% java Factors 11111111111111

11 239 4649 909091

% java Factors 11111111111111111

2071723

very long wait
(with a surprise ending)

51

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (int i = 2; i <= N/i; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Performance error. Correct program, but too slow.

Solution. Improve or change underlying algorithm.

Debugging: Performance Error

% java Factors 11111111

11 73 11 137

% java Factors 11111111111

21649 51329

% java Factors 11111111111111

11 239 4649 909091

% java Factors 11111111111111111

2071723 5363222357

fixes performance error:
if N has a factor, it has one

less than or equal to its square root

52

Q. How large an integer can I factor?

Note. Can't break RSA this way (experts are still trying).

% java Factors 3757208

2 2 2 7 13 13 397

% java Factors 9201111169755555703

9201111169755555703

Program Development: Analysis

† estimated

 largest factor
3 instant

digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i*i <= N)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of
computing….

53

Debugging

Programming. A process of finding and fixing mistakes.

1. Create the program.

2. Compile it.

Compiler says: That’s not a legal program.

Back to step 1 to fix syntax errors.

3. Execute it.

Result is bizarrely (or subtly) wrong.

Back to step 1 to fix semantic errors.

4. Enjoy the satisfaction of a working program!

5. Too slow? Back to step 1 to try a different algorithm.

