
COS 126 General Computer Science Fall 2007

Exam 2

This test has 10 questions worth a total of 50 points. You have 120 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet, two sided, handwritten by you.
No calculators or other electronic devices are permitted. Give your answers and show your work
in the space provided. Partial credit will be given for partially correct answers. Write out and
sign the Honor Code pledge before turning in the test:

“I pledge my honor that I have not violated the Honor Code during this examination.”

——————————————————————
Signature

Problem Score Problem Score
0 5
1 6
2 7
3 8
4 9

Sub 1 Sub 2

Total

Name:

NetID:

Preceptor: Donna Adam

Shirley JP

Tom Ed

Corey

The TOY reference card is on the last page of the exam.
Feel free to tear out the last page in order to use it more easily.

1

2 PRINCETON UNIVERSITY

0. Miscellaneous. (2 points) (really)

(a) Write your name and Princeton NetID in the space provided on the front of the exam,
and circle the name of your preceptor.

(b) Write and sign the honor code on the front of the exam.

1. Turing Machines (5 points)

The Turing Machine below is supposed to decide if the unary number on the left of the
question mark is greater than or equal to the unary number on the right, where the initial
position of the tape head is at the question mark, as shown on the sample tape below. If it
is, it prints “Y” on top of the question mark and then halts. If it isn’t, it prints “N” and
then halts. (The “unary” representation of an integer n, by the way, is just n consecutive
1’s.) The Turing Machine’s designer has quit unexpectedly, and you must finish the job. The
designer’s notes indicate that just one more state, and obviously a few state transitions, are
needed to complete the machine. Please fill in the missing state and transitions.

COS 126 EXAM 2, FALL 2007 3

2. Circuits (5 points)

You know that with AND, OR, and NOT gates alone, you can express any Boolean function
whatsoever—that the set of those gates is “universal.” In this question you will show how a
two-to-one mutiplexor is also universal by showing how each of AND, OR, and NOT can be
made from one two-to-one multiplexor.

(a) First, make a truth table for a two-to-one multiplexor. This device has three inputs,
which we’ll label D0, D1, and S. The select input S controls which of D0 and D1 is
copied to the output: when S is 0, the output equals D0, and when it’s 1, the output
equals D1.

(b) Show how to make each traditional logic gate from one multiplexor by setting each of
the 3 inputs to x, y, 1, or 0.

4 PRINCETON UNIVERSITY

3. Audio list (8 points)

In this question, you will finish an implementation of an Audio player. An AudioPlayer object
holds the names of song files in a linked list. A client program can use the AudioPlayer to
build the list and play songs by calling methods from the following API:

public class AudioPlayer
--

AudioPlayer() // create empty list of song filenames
void addSong(String filename) // add one song filename to the end of the list
void playAll() // plays all songs on list, prints each title
void skipToThisSong(String filename) // make filename song current, play and print

Please implement the three methods listed above and part of the main method in the boxes
provided below. You’ll see that main reads from StdIn a series of song filenames separated
by white space. Use the String method equals() to compare song filenames. (If a and b
are Strings, then a.equals(b) returns true when a and b are equal.) Feel free to call one
method from another method.

Here’s a test run of AudioPlayer (without the sound!):
% more songs.txt
AskMeWhy.mid ISawHerStandingThere.mid TwistAndShout.mid
% java AudioPlayer < songs.txt
Now Playing: ISawHerStandingThere.mid

public class AudioPlayer {
private Node start; // first song
private Node end; // last song
private Node cur; // current song

private class Node {
private String filename;
private Node next;

}

public AudioPlayer() {
start = null; end = null; cur = null;

}

// add song to the end of list
public void addSong(String filename) {

}

COS 126 EXAM 2, FALL 2007 5

// play and print the current song
private void playCur() {

System.out.println("Now Playing: " + cur.filename);
StdAudio.play(cur.filename);

}

// play and print all songs
public void playAll() {

}

// make requested song current, play it and print it
// assume it is in the list
public void skipToThisSong(String filename) {

}

// main (test client)
public static void main(String[] args) {

AudioPlayer player = new AudioPlayer();
// read song filenames from StdIn and store in the
// linked list

player.skipToThisSong("ISawHerStandingThere.mid");
}

}

6 PRINCETON UNIVERSITY

4. TOY (6 points)

TOY programmers, like most programmers, would often like to use a stack. Below is a
program with space set aside for data, the stack, and for the code for push and pop. Push
has already been implemented on lines 50-56. Your job is to finish implementing pop using
lines 61-66.

The TOY client code that calls the pop and push functions uses the TOY jump-and-link
instruction, which will save the caller’s PC in Register F. FF50 will thus be a call of the push
function, and FF60 will call pop. Both functions use TOY’s jump-register instruction EF00
to return to the caller. The stack starts at D0 and grows toward larger addresses. You don’t
need to implement any code to check if the stack is empty or full, nor any client code.

To push, the client will first have put the 16-bit value to be pushed in memory location 03,
and will expect pop to have put the popped value there when it returns.

The TOY reference card is on the last page of the exam.

// data
02: 00D0 stack pointer
03: 0000 item to push or pop (client supplies or consumes)

//push
50: 7101 R[1] <- 1 constant 1
51: 8202 R[2] <- mem[02] stack pointer to R[2]
52: 8303 R[3] <- mem[03] item to push gets loaded into R[3]
53: B302 mem[R[2]] <- R[3] item gets pushed onto stack
54: 1221 R[2] <- R[2] + R[1] increment stack pointer
55: 9202 mem[02] <- R[2] store new stack pointer
56: EF00 goto R[F] TOY’s return statement

//pop
60: 7101 R[1] <- 1 constant 1

61:

62:

63:

64:

65:

66:

//stack
D0: DEAD first item pushed will go here
D1: BEEF (stack grows down)
D2: DEAD |
D3: BEEF |
D4: ... V

COS 126 EXAM 2, FALL 2007 7

5. Object Oriented Programming (4 points)

You’re given code for a class, STLite, which is a simplified version of the ST (symbol table)
class used in the programming assignments, differing only in that the key is an int (which
you can assume is positive) and the value is a String. Here’s the API for STLite:

public class STLite
--

STLite() /* construct a new STLite */
void put(int key, String value) /* create an entry for the given key,

with the given value */
String get(int key) /* return the value associated with the

given key, or null if there is no entry
for that key */

You want to make a new class, STNew, which has the same API as STLite but is implemented
differently. Specifically, each STNew object should contain ten STLite objects, corresponding
to the final decimal digit of the key. You will want to create an array of STLite objects in
your STNew constructor.

Write code for the STNew class, which should use STLite.

public class STNew {

public STNew() {

}

public void put(int key, String value) {

}

public String get(int key) {

}
}

8 PRINCETON UNIVERSITY

6. Queues (7 points)

Here is the API for the Queue datatype:

public class Queue<Item>
--

Queue() // create an empty Queue
boolean isEmpty()

void enqueue(Item item)
Item dequeue()
Item peek() // next Item to be dequeued

Write a static client method QueueMerge() that take two queues of integers whose elements
have already been sorted in ascending order (first to be dequeued is smallest), and which will
merge those two queues, making a third queue with all the integers of both original queues,
in ascending order. The original queues need not be saved.

public static Queue<Integer> QueueMerge(Queue<Integer> r, Queue<Integer> s)
{

}

COS 126 EXAM 2, FALL 2007 9

7. Regular Expressions (6 points)

(a) How many unique strings are described by each of the following regular expressions?
(The symbol + means “one or more”.)

(i) (A|B)(A|B) Answer:

(ii) AB+ Answer:

(iii) AB* Answer:

iv) AB Answer:

(b) Which of the following regular expressions specifies a set of strings that can be accepted
by some deterministic finite state automaton? Circle the ones that can.

(i) (A|B)(A|B)

(ii) AB+

(iii) AB*

(iv) AB

(c) In Java, the regular expression “\d” matches any digit. Write an equivalent expression
without using a backslash.

(d) Here is a list of strings:

A: alphabet

B: abracadabra

C: babcock

D: hubbub

E: suburbia

F: dabchick

Write the letters corresponding to all of the words that contain the following regular
expressions. As an example, the answer to (i) is already given. (The symbol . (dot) is a
wildcard that indicates one occurrence of any character.)

(i) ab Answer: ABCF

(ii) abc Answer:

(iii) a.*a Answer:

(iv)* (eight dots) Answer:

(v) bu(b|r) Answer:

10 PRINCETON UNIVERSITY

8. Theory: True or False (5 points)

Write T for true or F for false next to each of the following statements, according to their
veracity.

The Church-Turing Thesis is called a thesis and not a theorem because it is a statement
about the real world that cannot be formally proved.

It’s possible to write a program that can decide whether another program solves the
halting problem.

In general, it is undecidable whether a Turing Machine will halt on a given input.

In general, it is undecidable whether a Turing Machine will halt on a given input after
at most n steps.

If a problem is in P, then any program that solves that problem must run in polynomial
time.

If a problem is in P, then it’s possible to write a program that checks proposed solutions
to that problem in polynomial time.

If a problem is in NP, then it’s possible to write a program that checks proposed solutions
to that problem in polynomial time.

If P=NP, then the Traveling Salesperson Problem can be solved in polynomial time.

If the Traveling Salesperson Problem can be solved in polynomial time, then P=NP.

When a DFA is processing a particular input string, its running time will always be
polynomial in the length of that input string.

9. Nugget (2 points)

What is one intriguing computer science factoid or idea from this course that you shared with
a parent or a friend at some point, or that you think you might? (2 points for any serious
answer)

COS 126 EXAM 2, FALL 2007 11

TOY REFERENCE CARD

INSTRUCTION FORMATS

| | | ||
Format 1: | opcode | d | s | t | (0-6, A-B)
Format 2: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations
1: add R[d] <- R[s] + R[t]
2: subtract R[d] <- R[s] - R[t]
3: and R[d] <- R[s] & R[t]
4: xor R[d] <- R[s] ^ R[t]
5: shift left R[d] <- R[s] << R[t]
6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory
7: load address R[d] <- addr
8: load R[d] <- mem[addr]
9: store mem[addr] <- R[d]
A: load indirect R[d] <- mem[R[t]]
B: store indirect mem[R[t]] <- R[d]

CONTROL
0: halt halt
C: branch zero if (R[d] == 0) pc <- addr
D: branch positive if (R[d] > 0) pc <- addr
E: jump register pc <- R[d]
F: jump and link R[d] <- pc; pc <- addr

Register 0 always reads 0.
Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout.
pc starts at 10

16-bit registers
16-bit memory locations
8-bit program counter

