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1 Degree/discrepancy theorem

The ideas presented in this section are due to [She07]. The heuristic idea
of the construction is as follows. We start with some Boolean function

f : {−1, 1}n → {−1, 1} of ”high degree”

We then produce a pair{
”Nice” distributionµ on {−1, 1}n

”Useful” matrix M

such that discµ(M) is low. This can turn out to be useful in proving lower
bounds. To begin with, we need the following

Definition 1.1 (Threshold degree). We will say that the threshold degree of
f is at most d (and write thr(f) ≤ d) if there exists a degree d polynomial P
(with real coefficients, but can in fact assume integral) such that ∀x ∈ {−1, 1}n,
f(x) = sgn(P (x)).

With this definition, we are ready to state the first ingredient of the con-
struction.

Theorem 1.2. If thr(f) = d then there exists a distribution µ such that

∀P ∈ R[x],with deg P < d, Eµ(f · P ) = 0

Sketch. We shall make use of Farkas’ Lemma, a very nice discussion of which is
provided in [Tao]. The statement of the lemma is simple: If we have a system
of linear inequalities Pi(x) ≥ 0, then either it has a solution, or it implies a
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contradiction, i.e. there exist qi ≥ 0 such that
∑
qiPi(x) = −1. In our case, we

have three types of conditions
Eµ(f · xα) = 0, where xα is any monomial of degree strictly less than d

µ(v) ≥ 0, where v is any vector on n bits
Eµ(1)− 1 ≥ 0

Remark that A = 0 is equivalent to A ≥ 0 and −A ≥ 0. A little explanation
of the conditions is in order. The middle condition forces µ to be a positive
function on the hypercube, while the last one forces it to be non-trivial. Once
we get such a non-trivial µ satisfying the above, we can just renormalize, since
everything is homogenous in µ. So, we can assume, by Farkas’ lemma, that there
is a contradiction in the system. Let us write it, using linearity of expectation
and assembling the linear combinations of the first type of conditions into a
single polynomial

Eµ(f · P ) +
∑

v∈{−1,1}n

qvµ(v) +Q(Eµ(1)− 1) = −1⇔

∑
v∈{−1,1}n

µ(v)f(v)P (v) +
∑

v∈{−1,1}n

qvµ(v) +Q[
∑

v∈{−1,1}n

µ(v)]−Q = −1

Recall that in our considerations, the variables are µ(v). So, the only chance is
that Q = 1, and all the other positions cancel, i.e.

f(v)P (v) + qv + 1 = 0

But using that qv ≥ 0, we have that f(v)P (v) < 0,∀v ∈ {−1, 1}n. So, −P gives
a contradiction to the assumption on the threshold degree of f

With this, we have accomplished the first part of our program - obtaining
a ”nice” distribution. Now, we go on an construct the matrix. Again, we are
given a Boolean function f : {−1, 1}n → {−1, 1} and some N ≥ n. Consider the
matrix M with 2N rows and

(
N
n

)
columns. The rows are indexed by vertices in

the corresponding hypercube, while the columns by subsets on n elements of [N ].
If we are given a vertex of the hypercube X and a subset S, MX,S := f(X|S),
i.e. the corresponding entry of M is given by the value of f when projecting
the vertex on the subset given by S.

Another, more fruitful way to interpret this is as follows. We have a row and
a columns player. They both know the function f , but the row player knows
the N -vector X, while the column player knows the subset of X on which f has
to be evaluated. Bounds on the discrepancy of M would give bounds on the
communication complexity of this game. The main theorem in this sense is

Theorem 1.3 ([She07]). If f has threshold degree at least d, then there exists
a distribution λ such that

discλ(M) ≤
(
O(n2)
Nd

)d
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Before we embark on the proof of this theorem, we make a few remarks
on the method and some preliminary assumptions. First of all, recall that the
discrepancy with respect to a measure λ was defined as

discλ(M) = max
Rectangles R

∑
R

λ(X,S)MX,S

It can be shown (by a simply probabilistic argument) that

∃αX ∈ {−1, 1}, βS ∈ {−1, 1} such that

discλ(M) ≤
∑
X,S

αXβS · λ(X,S)MX,S

In fact, the above inequality can be reversed up to some constants. The plan
of the proof then is to first produce a measure λ on our big matrix M , and
to estimate discλ(M)2 instead of just discλ(M). We will get some cancelations
after the expansion of the squared quantity.

Proof. From the fact that trh(f) ≥ d, we deduce that there exists a measure µ
as in theorem 1.2. Define then the measure λ by

λ(X,S) := µ(X|S) · 2−N+n ·
(
N

n

)−1

The additional factors are for normalization purposes. In the following chain of
inequalities, all the expectations are taken with respect to the uniform distri-
bution of X and S:

discλ(M)2 =

∑
X,S

αXβSλ(X,S)f(X,S)

2

=
(

2n E
X∼U

E
S∼U

αXβS · µ(X|S)f(X|S)
)2

=
(

2n E
X∼U

αX E
S∼U

βS · µ(X|S)f(X|S)
)2

≤ 4n Eα2
X (EβS · µ(X|S)f(X|S))2︸ ︷︷ ︸

by Cauchy-Schwartz

= 4n E
S,T

βSβT E
X
µ(X|S)f(X|S)µ(X|T )f(X|T )︸ ︷︷ ︸

using α2
X = 1 and expanding

≤ 4n E
S,T
|E
X
µ(X|S)f(X|S)µ(X|T )f(X|T )︸ ︷︷ ︸

Γ(S,T )

|

To sum up, we have obtained

discλ(M)2 ≤ 4n
n∑
k=0

P(|S ∩ T | = k) · max
|S∩T |=k

|Γ(S, T )|
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Now, the necessary step is given by the following

Claim. If |S ∩ T | < d then Γ(S, T ) = 0

Proof. Without loss of generality, let us assume that S = {1, . . . , n} and T =
{1, . . . , k} ∪ {n+ 1, . . . , 2n− k}. Then, the quantity to be considered is

E
x1,...xn

µ(x1, . . . , xn)f(x1, . . . , xn) ·

· E
xn+1,...,x2n−k

µ(x1, . . . , xk, . . . , xn+1, . . . , x2n−k)f(x1, . . . , xk, . . . , xn+1, . . . , x2n−k)︸ ︷︷ ︸
P (x1,...,xk), multilinear, of degree ≤k

We can thus apply Theorem 1.2 to the second factor and conclude that the
expression indeed vanishes.

To conclude, we just need to estimate the choices of some sets configurations.
When |S∩T | > d, the expression can be estimated (using that the expectations
involved are ≤ 1)

2−n E
µ

(f · 2−n+k E
µ

(f)) ≤ 2−2n+k = 4−n · 2k

We also use

P(|S ∩ T | = k) =
(
n

k

)
︸︷︷︸
∩ with S

(
N − n
n− k

)
︸ ︷︷ ︸

outside S

(
N

n

)−1

︸ ︷︷ ︸
normalization

≤
(
en2

Nk

)k
In conclusion,

discλ(M) ≤
n∑
k≥d

(
en2

Nk

)k
· 2k ≤

(
O(n2)
Nd

)d
as promised.

1.1 Applications

Here, we sketch a few an application of the developed method. One can
use the theorem proved to separate AC0 from Majority of Threshold circuits.
The idea is to exhibit a function that is computed by a depth 3 circuit, but
has exponentially small discrepancy. Combined with a result of Nisan who
shows that Majority of Threshold circuits can compute only functions of high
discrepancy or has to use a large number of threshold gates, this gives the
separation. The result of Nisan has behind the idea that there exists an efficient
communication protocol for Majority of Threshold functions.
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Proceeding to the construction, one defines the Minsky-Papert function on
n = 4m3 variables.

MPm(x) :=
m∨
i=1

4m2∧
j=1

xi,j

It is a result of Minsky and Papert that MPm has threshold degree m. Using
Theorem 1.3, we see that this function has discrepancy exp(−Ω(n1/5)) with
respect to a given distribution. To see this, just apply the theorem with N � n2.

Another application of this method was found recently by Lee-Shraibman
and Chattopadhyay-Ada in proving a lower bound on the Disjointness predicate
in the multiparty number-on-the-forehead model.
Many thanks to Moritz for help with expanding this section

2 Group Representations

This section is intended to provide a brief introduction to the main facts of the
representation theory of finite groups. The main idea is to study a group by
considering its possible actions on a simple object, such as a finite dimensional
vector space.

2.1 Abelian groups

Let us first consider the case of an abelian group G with n elements.

Definition 2.1. A map ρ : G → C is said to be a representation of G if and
only if it is a group homomorphism, i.e.

ρ(xy) = ρ(x)ρ(y)

Remark 2.2. For this to hold, it is clear that ρ(id) = 1, and moreover, since
the group is finite, it must be that ∀g ∈ G, |ρ(g)| = 1. Moreover, ρ(g−1) =
ρ(g). Another way to view a representation in this case is by considering ρ as
a function on the group. We then have the following inner product

〈ρ, µ〉 := E
g∈G

ρ(g)µ(g)

The main result concerning abelian groups is the following

Theorem 2.3. The set of representations of G, viewed as a subset of the vector
space of functions G→ C, is an orthonormal basis.

Proof. The first part is to show that if |G| = n, then we have at least n distinct
representations. We will then show that any two representations are orthonor-
mal (if distinct), and this will conclude the proof, sice the dimension of the
space of functions on G is n.

If G = Z/(m) a cyclic abelian group, then we fix a primitive mth root of
unity ωm and define the m representations by ρi(j) = ωi·jm , where i = 0 . . .m−1.
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We now remark that if we have two abelian groups G1, G2, and representations
ρ, µ of each, one can have a representation of G1 × G2 given by γ(g1 × g2) =
ρ(g1)µ(g2). It is easy then to see that the above construction extends to arbi-
trary products of cyclic groups, and using the classification theorem for finite
abelian groups which states that all of them are products of cyclic groups, we
are done with the first part.

Orthogonality follows from the following chain of identities

〈ρ, µ〉 := E
g∈G

ρ(g)µ(g) = E
g∈G

ρ(g0g)µ(g0g)

= E
g∈G

ρ(g0)µ(g0)ρ(g)µ(g)

=
ρ(g0)
µ(g0) E

g∈G
ρ(g)µ(g) =

ρ(g0)
µ(g0)

〈ρ, µ〉

So, if ρ and µ are distinct, it is clear that it must be that 〈ρ, µ〉 = 0

Another useful operation on representations of abelian groups is the convo-
lution. Formally, it is given by

(ρ ∗ µ)(g) :=
∑
hh′=g

ρ(h)µ(h′)

Apriori, it is not clear that this is associative and even why it would make sense
to study it. But a better interpretation of it is to view a representation as an
element of the algebra C[G], i.e. the algebra generated freely by the elements
of G, with the relations among them:

ρ =
∑

ρ(g) · g ∈ C[G]

Then, convolution is just multiplication in this algebra. Useful results about
convolutions are

Theorem 2.4. For two distinct representations ρ, µ, we have that

ρ ∗ ρ = nρ and ρ ∗ µ = 0

Proof. The first statement is trivial:

(ρ ∗ ρ)(g) =
∑
hh′=g

ρ(h)ρ(h′) =
∑
hh′=g

ρ(g) = nρ(g)

For the second one, write ρ(h) = ρ(g/h′) = ρ(g) · ρ−1(h′), where hh′ = g.

(ρ ∗ µ)(g) =
∑
hh′=g

ρ(h)µ(h′) =
∑
hh′=h

ρ(g)ρ−1(h′)µ(h′) = ρ(g)〈ρ−1, µ〉 = 0

Corollary. If we write two functions on G in terms of the representations:
F =

∑
aiρi, H =

∑
biρi, then

F ∗H =
1
n

∑
aibiρi
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2.2 General finite groups

We would like to generalize our notion of representation to general non-
abelian groups. Of course, because of the lack of commutativity, to give ourselves
more freedom, we should consider GLn(C). In it’s outmost generality, we can
consider

Definition 2.5. An n-dimensional representation of a group G is a homomor-
phism ρ : G→ GLn(C).

It turns out to be extremely useful to have an invariant (with respect to the
action of G) inner product on Cn. Since the group is finite, we can pick any inner
product and then just average over the whole group. This allows us to replace
in the above definition GL by U, that is, we can assume the representation is
given by unitary matrices.

There are several important notions regarding representations that must be
discussed. First, note that if we have two representations ρ : G → U(V ) and
µ : G→ U(W ), then we can form their direct sum

ρ⊕ µ : U(V ⊕W )

Moreover, when we have another group H with representation γ : H → U(T ),
we can form their tensor product

ρ⊗ γ : G×H → U(V ⊗ T )

Example 2.6 (The regular representation). Every group acts on itself, so we
can consider a n = |G|-dimensional vector space V whose coordinates are in-
dexed by the elements of the group, and where G acts by permutation. This
gives us a representation REG(g), where the image are some permutation ma-
trices.

As we saw above, having a few representations allows one to construct many
others. One of the main goals of representation theory is to understand what
are all the possible representations of a given group G. It turns out that all of
them are direct sums of a finite number of building blocks.

Definition 2.7. A representation ρ on a vector space W is said to be reducible
if it is the direct sum of two other representations. Equivalently, there exists
a subspace V ⊂ W such that ρ(G)V = V . Then W = V ⊕ V ⊥. If it is not
reducible, we call it irreducible.

It is clear from the above definition that it is enough to know all the irre-
ducible representations and to find out a way to decompose a representation
into irreducible ones. We shall need a few more definitions:

Definition 2.8. A morphism of representations ρ : G→ U(V ), µ : G→ U(W )
is a map between vector spaces T : V →W such that for any g ∈ G, T · ρ(g) =
µ(g) · T .
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Definition 2.9. The character of a representation ρ is the map χρ : G → C
given by χρ(g) = tr ρ(g).

The main theorem we shall prove states that given two distinct irreducible
representations, their characters are orthogonal. This parallels the correspond-
ing result on commutative groups. Moreover, the reader can check (although it
will also follow from our proof) that the irreducible representations of an abelian
group are all 1-dimensional. This follows because a set of matrices that commute
can be simultaneously diagonalized. Let us now state the main orthogonality
result:

Theorem 2.10 (Orthogonality of characters). Suppose that ρ and µ are two
distinct irreducible representations of G. Then

〈χρ, χµ〉 = 0

Let us first deduce a few important consequences of the above theorem. First,
it is clear that any representation decomposes as the direct sum of finitely many
irreducible ones, and this decomposition if unique up to the order of factors.
Suppose we thus have ρ = ρ1⊕ . . .⊕ ρk, where all the ρi’s are irreducible. If we
are given another irreducible representation µ, then

〈χρ, χµ〉 = # of ρi’s isomorphic to µ

The main consequence of this is that the regular representation contains all
representations of G, and with multiplicities we can explicitly give:

〈χREG, χµ〉 =
∑ 1

n
tr(REG(g)) tr(µ(g)) =

= (using that tr(REG(g)) = nδg,id)

=
1
n

tr(REG(1)) · dimµ

= dimµ

This allows us to conclude that

REG =
⊕

ρi irreducible rep.

ρdim ρi

i

This shows that all irreducible representations of G are contained with corre-
sponding multiplicity in REG. In particular,

|G| =
∑

all irreducible ρi

|dim ρi|2

. Before we proceed to the proof of the orthogonality theorem, we need a small

Lemma 2.11.
1
n

∑
g∈G

tr(ρ(g)) 6= 0⇔ ∃v such that ρ(g)v = v,∀g ∈ G
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Proof. Define R := 1
n

∑
g∈G ρ(g). It follows then that R2 = R, since ∀g0 ∈ G,

ρ(g0)
∑
g∈G

ρ(g) =
∑
g∈G

ρ(g)

It is clear that trR 6= 0 if and only if R has an eigenvalue different from 0 as
well. Since R is a projection, we deduce it’s only non-zero eigenvalue can be 1.
So, let Rv = v.

‖v‖ = ‖Rv‖ ≤ 1
n

∑
‖ρ(g)v‖ = v‖

Hence in the above inequalities we have equalities everywhere, and this means
all ρ(g)v and v are proportional, with constant of proportionality 1, thus ρ(g)v =
v,∀g.

There are a few more remarks before we prove the orthogonality result. The
first result is known as Schur’s lemma. We defined a morphism of represen-
tations above. Schur’s lemma states that a morphism between two irreducible
representations is either trivial (sending everything to 0), or provides an iso-
morphism between the representations. The proof is simple - if the morphism
is L : V → W , then both kerL and im L are invariant (w.r.t. the correspond-
ing representations) subspaces. Since the representations are irreducible, this
means that each is either 0, or the whole space. kerL = V ⇔ im L = 0,
and is equivalent to L being the 0-morphism. The other possible situation is
kerL = 0, im L = W , yielding that L is indeed an isomorphism.

Proof of Theorem 2.10 . Consider the quantity

1
n

∑
g∈G

tr(ρ(g))tr(µ(g)) =
1
n

∑
g∈G

tr(ρ(g)) tr(µ(g−1)) =
1
n

∑
g∈G

tr
[
ρ(g)⊗ µ(g−1)

]
The last equality comes from the fact that if we have two operators A,B on V,W
respectively, with eigenvalues λi, µj with eigenvectors vi, wj , then the eigenval-
ues of A ⊗ B on V ⊗W are λiµj , with eigenvectors vi ⊗ wj . We claim that if
the above expression is different from 0, we shall exhibit a non-trivial morphism
between ρ and µ. By Schur’s lemma, it will be an isomorphism.

By the previous lemma, there exists an 0 6= L ∈ V ⊗W such that

(ρ(g)⊗ µ(g−1))L = L,∀g ∈ G

We are almost done, once we prove the following claim. Given two vectors spaces
V,W , with fixed basis ui, i = 1, . . . , n, vj , j = 1, . . . ,m, identify the space V ⊗W
with the space of n×m matrices with basis element ui ⊗ vj sent to the matrix
having 1 in row i, column j, and 0 everywhere else. The claim is then that if
we are given A,B matrices acting on V , respectively W , then ∀L ∈ V ⊗W ,
(A ⊗ B)L = ALB. Notice that by linearity of both sides in L, it is enough to
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prove this for L = ui ⊗ vj . But then,

(A⊗B)ui ⊗ vj = (Aui)⊗ (Bvj) = (
∑
k

Ak,iuk)⊗ (
∑
l

Bl,jvl)

=
∑
k,l

Ak,iBl,juk ⊗ vl

However, it is easy to see that if 4i,j has 1 in the cell (i, j) and 0 everywhere
else, then (A4i,jB)k,l = Ak,iBl,j , as we claimed. Putting these together, we
can apply the claim to the identity (ρ(g) ⊗ µ(g−1))L = L and conclude that,
in matrix form, ρ(g)Lµ(g)−1 = L, or equivalently ρ(g)L = Lµ(g). By Schur’s
lemma, this yields an isomorphism.
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