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1 Pseudo-random functions

Roughly speaking, a pseudo-random function is one which behaves in a non-
deterministic way. While there is no universal definition, various properties can
distinguish functions as pseudo-random.

Example 1.1. Let us consider the set

H = {f | the smallest circuit for f has size ≥ 2n/2}

If we denote by H the complement of H, it is clear that

|H| ≤ #{circuits of size ≤ 2n/2} ≤ O(2n/2n)

Clearly then Pr[f ∈ H] 0, that is, most functions are in H.

Another good property that is definitely expected of random functions is
given in the following

Example 1.2. Consider f : {0, 1}n → {0, 1}. We will say that f ∈ H if
after fixing n−n1/10 indices i1, . . . in−n1/10 and the values of those input bits to
xij = aij , then f |a 6= const.

We then have the following

Theorem 1.1 (follows from Hastad’s switching lemma). If f ∈ H, for H as in
the previous example, f does not have a polynomial-size constant-depth circuit.

As an example of f ∈ H with this property, consider f(x1, . . . xn) = x1 ⊕
. . .⊕ xn. (Recall that only AND, OR and Negation are allowed in a circuit)

1



2 Natural Proofs

Suppose we would like to show that a function f has no small circuit, i.e.f /∈
SIZE(nc) for c >> 0, where by SIZE(nx) we denote functions with circuits
of size nc. The paradigm of natural proofs is to find some H with the following
properties:

Pseudo-largeness - Pr[f ∈ H] ≥ 1− ε, with ε very small.

Constructiveness - Can determine if f ∈ H in 2O(n) time.

Useful - H
⋂
SIZE((nc) = ø

With this in mind, we arrive at the following

Definition 2.1. H is ”nc-natural” if

f ∈ H ⇒ f /∈ SIZE(nc)

Although one might hope to prove various lower bounds by trying to find
H’s that are nc-natural, the following theorem of Rudich and Razborov (see
[RR97])

Theorem 2.1. If we assume a conjecture that is weaker than average-case
factoring n-bit integers ∈ SIZE(2n1/10

) then there does not exist a nc-natural
H for c >> 0.

3 The probabilistic method and constructions

Some of the most famous problems in combinatorics are related to Ramsey
numbers. By definition, the Ramsey number R(n, k) is defined to be the smallest
number such that whenever one has a graph G with N ≥ R(n, k) vertices, the
graph G either has an n− clique, or k independent vertices. A priori, it is not
clear that R(n, k) is finite. However, the following is easy to prove:

Theorem 3.1 (Ramsey). R(n, k) ≤
(
n+k

k

)
+O(n+ k)

Proof. We use induction on n + k. Clearly, for n = k = 1, every graph on 2
vertices either has an edge, or 2 independent vertices, and in either case the
bound holds. Suppose we are in the situation with n+1 and k+1. Suppose you
have a graph. Pick any vertex v. If it has R(n, k+1) neighbors, then either that
subgraph has k + 1 independent vertices, or it has an n-clique, which together
with v gives an n+ 1-clique. If the vertex v has R(n+ 1, k) vertices with which
it is not connected, then that subgraph either has an n + 1-clique, or it has k
independent vertices, which together with v yield k + 1 independent ones. So,
we obtain that R(n+ 1, k + 1) ≤ R(n+ 1, k) +R(n, k + 1) + 1, from which the
theorem follows.
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If we look closer at the asymptotic of this sequence, we see that R(n, n) ≤
O(2n). So, it is interesting to know a good lower bound. The first one to find a
non-trivial lower bound was Erdos, but his proof is not constructive. This was
probably the first use of the probabilistic method.

Theorem 3.2 (Erdos). R(n, n) ≥ O(2n/2)

Proof. This is a simple matter of counting. We call a graph bad if it contains
either an n-clique or n independent vertices. We would like to show that the
number of bad graphs on N vertices is less than the total number of graphs on
N vertices, for N reasonably large. Now, the number of bad graphs is bounded
by 2

(
N
n

)
·2(N

2 )−(n
2), since

(
N
n

)
is the total number of choices for a sub-graph with

n vertices, and 2(N
2 )−(n

2) is the number of choices for the edges outside this fixed
graph. The factor 2 comes from considering both cliques and independent sets.
Now, we would like this number to be less than the total number of graphs,
which is just 2(N

2 ). So, we need

2
(
N

n

)
· 2

(
N

2

)
−
(
n

2

)
< 2

(
N

2

)
⇔ 2

(
N

n

)
< 2

(
n

2

)

It is enough to check this for N = 2n/2. Let’s approximate
(
N

n

)
≤ Nn

n!
, and

since
(
n

2

)
=
n(n− 1)

2
, this is equivalent to 2n/2+1 < n!, which is obvious.

3.1 Hadamard Matrices

A good example, although far from sharp, related to the question of Ramsey
numbers, is given by Hadamard matrices. These are defined as follows.

Definition 3.1. The entries of the Hadamard matrix M2n×2n are given by
M−→x ,−→y =< −→x ,−→y >=

∑
xiyi( mod 2), where we consider the rows and columns

indexed by binary vectors.

This matrix clearly gives us a graph on N = 2n vertices, and remark that
the set S = (v, v) has roughly

√
N vertices, which are independent (a similar

construction works for a clique). This example turns out to be sharp, as can be
seen from the following theorem:

Theorem 3.3. A clique or an independent set in the graph given by the Hadamard
matrix has size ≤ O(

√
N).

Before proving the theorem, we begin with the following

Lemma 3.4 (The Johnson bound). Suppose we have v1, . . . vt ∈ Rn vectors,

with ‖vi‖ = 1, and < vi, vj >≤ −δ, ∀i 6= j. Then t+ 1 ≤ 1
δ
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Proof. (of the Lemma) We have

0 ≤ ‖
∑

vi‖2 =
∑
‖vi‖2 +

∑
i6=j

< vi, vj >≤ t− δ(t2 − t)

, hence t+ 1 ≤ 1
δ

.

Now, back to the proof of our theorem.

Proof. (of the theorem on Hadamard graphs) Suppose we pick a =
√
N vertices

given by vectors v1, . . . , va. To be able to apply the lemma, we view the vectors
as having elements {±1} instead of {0, 1}. Now, we disregard the entries at the
intersection of the same numbered columns, and notice that after normalization,
the inequality in the lemma is satisfied by the scalar products of the vectors,

with δ = O(N
−

1
2 ). We then have the desired bound.

3.2 Unnatural constructions

As we saw in the previous section, it is quite non-trivial to present explicit
examples using pseudo-random constructions. Moreover, there is a clear limit
to what can be achieved by these methods. However, many interesting and
quite strong (in terms of the lower bounds they provide) are constructions from
Number Theory. They are often related to modular arithmetic and similar tools.
We will work out an example, the Frankl-Wilson graph (see [FW81]). This is
an example where for N vertices, we get maximal cliques or independent sets
of size O(

√
logN).

Example 3.1 (The Frankl-Wilson Graph). Fix a prime p. We will construct a

graph on V =
(

p3

p2 − 1

)
vertices, which are parameterized by subsets of p2 − 1

elements in [p3]. We put an edge between two vertices (S, T ) iff |S
⋂
T | ≡

−1( mod p).

Theorem 3.5 ([FW81]). Any clique or maximally independent set of vertices

in the above graph has size at most pO(p). Given that V ≥ (
p3

p2 − 1
)p2−1 ∼ pp2

,

we get the promised bound.

Proof.

(S, T ) ∈ E ⇔ |S
⋂
T | ∈ {p− 1, 2p− 1 . . . , (p− 1)p− 1}︸ ︷︷ ︸

|L|=p

=: L

We shall prove the statement for the cliques, and the statement for independent
sets will follow from similar techniques. Consider the sets Si which for a clique
and note that |Si| = p2 − 1. Remark the following useful
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Lemma 3.6. If S1, . . . , Sn ∈ [n] and ∀i 6= j, |Si

⋂
Sj | ∈ L then k ≤ nO(|L|)

Proof. (of the Lemma) Assign the natural correspondence Si ! vi ∈ {0, 1}n.
Let now

Pi(−→x ) =
∏
l∈L

(< −→x , vi > −l)

Remark now that clearly Pi(vj) = 0, unless i = j. This allows us to conclude
that the Pi’s are linearly independent as polynomials. Moreover, after reduc-
tion of powers of the xi’s, we see that the polynomials in the linear space of
polynomials that have at most |L| products of xi, and hence of dimension at
most n|L|, whence k ≤ n|L|.

Going back to our problem, we immediately obtain the bound we wanted
for the case of cliques. For the independent set situation, we use a ”modulo p”
variant of the above argument to obtain similar bounds.

4 Matrix Rigidity

Roughly speaking, a matrix is rigid if it cannot be written as the sum of a matrix
of a low rank and a sparse matrix. More technically for our purposes, we have

Definition 4.1. A n by n matrix is called rigid if ∀B,C with rank B ≤ n

1000
and C is n1/1000-sparse, i.e. every row of C has at most n1/1000 non-zero
elements, A 6= B + C.

Remark. While the above definition works for any field, one usually considers
it over F2. In this case, notice that being rigid is a pseudo-random property.
Indeed, the number of matrices of rank at most

n

1000
is at most the number of

products of two matrices of size n/1000 × n and n × n/1000, which is 2
2n2

1000 .
The number of sparse matrices is even less, from which we see that the ratio of
rigid matrices among all matrices is close to 1.

However, even proving that a particular matrix is rigid is a very difficult
thing. No good methods are known, although any matrix one thinks of seems
to be rigid. The importance of rigid matrices lies in the following theorem of
Valiant.

Theorem 4.1 ([Val77]). If A is a rigid matrix then x 7→ Ax has no O(n)-size,
O(log n)-depth linear circuit.

Before sketching the proof, we notice the following general graph-theoretic

Lemma 4.2. Consider a directed acyclic graph with depth ≤ c log n and n
vertices. (in our case, this will be the circuit). Then, ∀ε there exists a set of

edges S with |S| ≤
d 1

ε

c log log n
<

n

1000
such that every path of length ≥ ε log n

hits S.
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Proof. Label the nodes of the graph with increasing (according to the direction
of the graph) labels, and consider them in binary form, as binary sequences
with dlog log ne bits. Let now Xi be the set of edges for which the starting and
ending vertices have the most significant difference in bits on the ith position.
Removing one Xi, the depth of the modified graph roughly halved, since we
can just forget about the ith bit in the labeling and still get a good(w.r.t. the
direction) labeling. If we order the sets Xi according to size and remove the
smallest k, for k chosen big enough, we get that the bound on the number of

removed edges is satisfied, and also that the depth decreased to
log n
2k

, which
means there are no paths in the initial graph of length greater than that, not
passing through the selected edges.

Proof. (Sketch of Valiant’s theorem) The idea is that if we temporarily disregard
all but the edges chosen in the lemma and their predecessors, and view the last
nodes as outputs, this projects an input into something of size less than, say,
n/1000. This is clearly given by a matrix of rank at most n/1000. Now, notice
that the remaining circuit has length less than ε log n, whence it comes from a
sparse matrix. Considering now the composition of these things, we can deduce
that A = B + C, where B is of low rank and C is sparse. But this is in
contradiction to the assumption that A is rigid.
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