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Chapter 21

Pseudorandom constructions:
expanders and extractors

“How hard could it be to find hay in a haystack?”
Howard Karloff

The probabilistic method is a powerful method to show the existence of objects (e.g., graphs,
functions) with certain desirable properties. We have already seen it used in Chapter 6 to show the
existence of functions with high circuit complexity, in Chapter 19 to show the existence of good
error correcting codes, and in several other places in this book. But sometimes the mere existence of
an object is not enough: we need an explicit and efficient construction. The paradigm of explicitly
constructing objects with pseudorandom properties has been extremely useful in complexity theory
and computer science at large. One example is the constructions of error correcting codes shown
in Chapter 19. In this chapter we will see two more examples.

Expander graphs are graphs with certain “pseudorandom” properties that have had a vast num-
ber of applications, ranging from fast sorting networks, to counterexamples in metric space theory,
to proving the PCP Theorem. In Section 21.1 we lay the groundwork for defining expanders, show-
ing how random walks on graphs can be analyzed in terms of the adjacency matrix’s eigenvalues.
Then, in Section 21.2, we give two equivalent definitions for expander graphs and show their ap-
plication for a randomness-efficient error reduction of probabilistic algorithms. In Section 21.3 we
show an explicit construction of expander graphs. Finally, in Section 21.4, we use this construction
to show a deterministic logspace algorithm for undirected graph connectivity.

Our second example of an explicit construction concerns the following issue: while randomized
algorithms are modeled using a sequence of unbiased and independent coin tosses, real-life random-
ness sources are imperfect and have correlations and biases. In Section 21.5 we define randomness
extractors— algorithms to extract (uncorrelated, unbiased) random bits from any weakly random
source— and give explicit constructions for them. Then, in Section 21.6 we use extractors to de-
randomize probabilistic logspace computations, albeit at the cost of some increase in the space
requirement. We emphasize that in contrast to the results of chapters 20 and 19, this derandom-
ization (as well as all the other results of this chapter) is unconditional and uses no unproven
assumptions.

Both the constructions and analysis of this chapter are somewhat involved. You might wonder
why should coming up with explicit construction be so difficult. After all, a proof of existence via
the probabilistic method shows not only that an object with the desired property exists but in fact
the vast majority of objects have the property. As Karloff said (see quote above), how hard can it
be to find a single one? But perhaps it’s not so surprising this task is so difficult: after all, we know
that almost all Boolean functions have exponential circuit complexity, but finding even a single one
in NP with this property will show that P 6= NP!
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21.1 Random walks and eigenvalues

In this section we study random walks on (undirected regular) graphs. We will see that we can
use elementary linear algebra to relate parameters of the graph’s adjacency matrix to the behavior
of the random walk on that graph. As a corollary we obtain the proof of correctness for the
random-walk space-efficient algorithm for undirected connectivity described in Section 7.7. Note:
We restrict ourselves here to regular graphs, in which every vertex has the same degree. However,
we do allow our graphs to have self-loops and parallel edges. Most of the definitions and results
can be suitably generalized to undirected graphs that are not regular.

21.1.1 Distributions as vectors and the parameter λ(G).

Let G be a d-regular n-vertex graph and let p be some probability distribution over the vertices of
G. We can think of p as a (column) vector in Rn where pi is the probability that vertex i is obtained
by the distribution. Note that the L1-norm of p (see Note 21.1), defined as |p|1 =

∑n
i=1 |pi|, is

equal to 1. (In this case the absolute value is redundant since pi is always non-negative.) Now let
q represent the distribution of the following random variable: choose a vertex i in G according to
p, then take a random neighbor of i in G. We can easily compute q, since the probability qj that
j is chosen is equal to the sum over all of j’s neighbors i of the probability pi that i is chosen times
1/d (where 1/d is the probability that, conditioned on i being chosen, the walk moves to q). Thus
q = Ap, where A = A(G) is the normalized adjacency matrix of G. That is, for every two vertices
i, j, Ai,j is equal to the number of edges between i and j divided by d. Note that A is a symmetric
matrix,1 with all its entries between 0 and 1, and the sum of entries in each row and column is
exactly one. Such a matrix is called a symmetric stochastic matrix.

Let {ei}ni=1 be the standard basis of Rn (i.e. ei has 1 in the ith coordinate and zero everywhere
else). Then for every i ∈ [n], A`ei represents the distribution X` of the last step in a `-step random
walk from the ith vertex. This already suggests that considering the adjacency matrix of a graph
G could be very useful in analyzing random walks on G.

Definition 21.2 (The parameter λ(G).)
Denote by 1 the vector (1/n, 1/n, . . . , 1/n) corresponding to the uniform distri-
bution. Denote by 1⊥ the set of vectors perpendicular to 1 (i.e., v ∈ 1⊥ if
〈v,1〉 = (1/n)

∑
i vi = 0).

The parameter λ(A), denoted also as λ(G), is the maximum value of ‖Av‖2 over all
vectors v ∈ 1⊥ with ‖v‖2 = 1.

The value λ(G) is called the second largest eigenvalue of G. The reason is that since A is a
symmetric matrix, we can find an orthogonal basis of eigenvectors v1, . . . ,vn with corresponding
eigenvalues λ1, . . . , λn which we can sort to ensure |λ1| ≥ |λ2| . . . ≥ |λn|. Note that A1 = 1. Indeed,
for every i, (A1)i is equal to the inner product of the ith row of A and the vector 1 which (since
the sum of entries in the row is one) is equal to 1/n. Thus, 1 is an eigenvector of A with the
corresponding eigenvalue equal to 1. One can show that a symmetric stochastic matrix has all
eigenvalues with absolute value at most 1 (see Exercise 21.3) and hence we can assume λ1 = 1
and v1 = 1. Also, because 1⊥ = Span{v2, . . . ,vn}, the value λ above will be maximized by (the
normalized version of) v2, and hence λ(G) = |λ2|. The quantity 1− λ(G) is called the spectral gap
of the graph. We note that some texts use un-normalized adjacency matrices, in which case λ(G)
is a number between 0 and d and the spectral gap is defined to be d− λ(G).

One reason that λ(G) is an important parameter is the following lemma:

1A matrix A is symmetric if A = A†, where A† denotes the transpose of A. That is, (A†)i,j = Aj,i for every i, j.
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Note 21.1 (Lp Norms)

A norm is a function mapping a vector v into a real number ‖v‖ satisfying (1) ‖v‖ ≥ 0
with ‖v‖ = 0 if and only v is the all zero vector, (2) ‖αv‖ = |α| · ‖v‖ for every α ∈ R,
and (3) ‖v + u‖ ≤ ‖v‖ + ‖u‖ for every vector u. The third inequality implies that for
every norm, if we define the distance between two vectors u,v as ‖u− v‖ then this notion
of distance satisfies the triangle inequality.

For every v ∈ Rn and number p ≥ 1, the Lp norm of v, denoted ‖v‖p , is equal to
(
∑n

i=1 |vi|p)
1/p. One particularly interesting case is p = 2, the so-called Euclidean norm, in

which ‖v‖2 =
√∑n

i=1 v2
i =

√
〈v,v〉. Another interesting case is p = 1, where we use the

single bar notation and denote |v|1 =
∑n

i=1 |vi|. Another case is p = ∞, where we denote
‖v‖∞ = limp→∞ ‖v‖p = maxi∈[n] |vi|.
Some relations between the different norms can be derived from the Hölder inequality,
stating that for every p, q with 1

p + 1
q = 1, ‖u‖p‖v‖q ≥

∑n
i=1 |uivi|. To prove it, note that

by simple scaling, it suffices to consider norm one vectors, and so it enough to show that
if ‖u‖p = ‖v‖q = 1 then

∑n
i=1 |ui||vi| ≤ 1. But

∑n
i=1 |ui||vi| =

∑n
i=1 |ui|p(1/p)|vi|q(1/q) ≤∑n

i=1
1
p |ui|

p + 1
q |vi|

q = 1
p + 1

q = 1, where the last inequality uses the fact that for every
a, b > 0 and α ∈ [0, 1], aαb1−α ≤ αa+ (1− α)b.

The Hölder inequality implies the following relations between the L2, L1 and L∞ norms of
every vector (Exercise 21.1):

|v|1/
√
n ≤ ‖v‖2 ≤

√
|v|1‖v‖∞ (1)
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Lemma 21.3 Let G ba an n-vertex regular graph and p a probability distribution over G’s vertices,
then

‖A`p− 1‖2 ≤ λ`

Proof: By the definition of λ(G), ‖Av‖2 ≤ λ‖v‖2 for every v ⊥ 1. Note that if v ⊥ 1 then
Av ⊥ 1 since 〈1, Av〉 = 〈A†1,v〉 = 〈1,v〉 = 0 (as A = A† and A1 = 1). Thus A maps the space
1⊥ to itself and since it shrinks any member of this space by at least λ, λ(A`) ≤ λ(A)`. (In fact,
using the eigenvalue definition of λ, it can be shown that λ(A`) = λ(A)`.)

Let p be some vector. We can break p into its components in the spaces parallel and orthogonal
to 1 and express it as p = α1 + p′ where p′ ⊥ 1 and α is some number. If p is a probability
distribution then α = 1 since the sum of coordinates in p′ is zero. Therefore,

A`p = A`(1 + p′) = 1 +A`p′

Since 1 and p′ are orthogonal, ‖p‖2
2

= ‖1‖2
2

+ ‖p′‖2
2

and in particular ‖p′‖2 ≤ ‖p‖2 . Since p is
a probability vector, ‖p‖2 ≤ |p|1 · 1 ≤ 1 (see Note 21.1). Hence ‖p′‖2 ≤ 1 and

‖A`p− 1‖2 = ‖A`p′‖2 ≤ λ`

�

It turns out that every connected graph has a noticeable spectral gap:

Lemma 21.4 ([AlonSu00]) If G is a regular connected graph with self-loops at each vertex, then
λ(G) ≤ 1− 1

12n2 .

Proof: Let ε = 1
6n2 , let u ⊥ 1 be a unit vector and let v = Au. We need to prove that

‖v‖2 ≤ 1− ε/2 and for this it suffices to prove that 1− ‖v‖2
2
≥ ε. (Indeed, if ‖v‖2 > 1− ε/2 then

‖v‖2
2
> 1 − ε and hence 1 − ‖v‖2

2
< ε.) Since ‖u‖2 = 1, 1 − ‖v‖2

2
= ‖u‖2

2
− ‖v‖2

2
. We claim that

this is equal to
∑

i,j Ai,j(ui − vj)2 where i, j range from 1 to n. Indeed,∑
i,j

Ai,j(ui − vj)2 =
∑
i,j

Ai,ju2
i − 2

∑
i,j

Ai,juivj +
∑
i,j

Ai,jv2
j =

‖u‖2
2
− 2〈Au,v〉+ ‖v‖2

2
= ‖u‖2

2
− 2‖v‖2

2
+ ‖v‖2

2
= ‖u‖2

2
− ‖v‖2

2
,

where these equalities are due to the sum of each row and column in A equalling one, and to
‖v‖2

2
= 〈v,v〉 = 〈Au,v〉 =

∑
i,j Ai,juivj .

Thus it suffices to show
∑

i,j Ai,j(ui − vj)2 ≥ ε. Since u is a unit vector with coordinates
summing to zero, there must exist vertices i, j such that ui > 0,uj < 0 and at least one of these
coordinates has absolute value ≥ 1√

n
, meaning that ui − uj ≥ 1√

n
. Furthermore, because G is

connected there is a path between i and j containing at most D + 1 vertices (where D is the
diameter2 of G). By renaming vertices, let’s assume that i = 1, j = D + 1 and the coordinates
2, 3, . . . , D correspond to the vertices on this path in order. Now, we have

1√
n
≤ u1 − uD+1 = (u1 − v1) + (v1 − u2) + . . .+ (vD − uD+1) ≤

u1 − uD+1 = |u1 − v1|+ |v1 − u2|+ . . .+ |vD − uD+1| ≤√
(u1 − v1)2 + (v1 − u2)2 + . . .+ (vD − uD+1)2

√
2D + 1 , (2)

where the last inequality follows by relating the L2 and L1 norms of the vector (u1 − v1,v1 −
u2, . . . ,vD − uD+1); see Note 21.1. But this means that∑

i,j

Ai,j(ui − vj)2 ≥ 1
dn(2D+1) , (3)

2The diameter of a graph G is the maximum distance (i.e., length of shortest path) between any pair of vertices
in G. Note that the diameter of a connected n-vertex graph is always at most n− 1.
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since the left hand side of (3) is a sum of non-negative terms and (2) implies that the terms of the
form Ai,i(ui−vi)2 and Ai,i+1(vi−ui+1)2 (for i = 1, . . . , D) contribute at least 1

dn(2D+1) to this sum
(both Ai,i and Ai,i+1 are at least 1/d since they correspond to self-loops and edges of the graph).

Plugging in the trivial bound D ≤ n− 1 this already shows that λ(G) ≤ 1− 1
4dn2 . To prove the

lemma as stated, we use the fact (left as Exercise 21.2) that for every d-regular graphD ≤ 3n/(d+1).
�

The proof can be strengthened to show a similar result for every connected non-bipartite graph
(not just those with self-loops at every vertex). Note that this condition is essential: if A is the
adjacency matrix of a bipartite graph then one can find a vector v such that Av = −v.

21.1.2 Analysis of the randomized algorithm for undirected connectivity.

Together, lemmas 21.3 and 21.4 imply that, at least for regular graphs, if s is connected to t then
a sufficiently long random walk from s will hit t in polynomial time with high probability.

Corollary 21.5 Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let s be a
vertex in G. Let ` > 24n2 log n and let X` denote the distribution of the vertex of the `th step in a
random walk from s. Then, for every t connected to s, Pr[X` = t] > 1

2n .

Proof: By these lemmas 21.3 and 21.4 , if we consider the restriction of an n-vertex graph G to the
connected component of s, then for every probability vector p over this component and ` ≥ 13n2,
‖A`p−1‖2 < (1− 1

12n2 )24n2 logn < 1
n2 , where 1 here is the uniform distribution over this component.

Using the relations between the L1 and L2 norms (see Note 21.1), |A`p−1|1 < 1
n1.5 <

1
2n and hence

every element in the connected component appears in A`p with at least 1/n − 1/(2n) ≥ 1/(2n)
probability. �

Note that Corollary 21.5 implies that if we repeat the 24n2 log n walk for O(n log n) times (or
equivalently, if we take a walk of, say, length 100n3 log2 n) then we will hit every vertex t connected
to s with high probability.

21.2 Expander graphs.

Expander graphs are extremely useful combinatorial objects, which we will encounter several times
in the book. They can be defined in two equivalent ways. At a high level, these two equivalent
definitions can be described as follows:

• Combinatorial definition: A constant-degree regular graph G is an expander if for every subset
S of less than half of G’s vertices, a constant fraction of the edges touching S are from S to
its complement in G; see Figure 21.1.

• Algebraic expansion: A constant-degree regular graph G is an expander if its parameter λ(G)
bounded away from 1 by some constant. That is, λ(G) ≤ 1− ε for some constant ε > 0.

What do we mean by a constant? By constant we refer to a number that is independent of
the size of the graph. We will typically talk about graphs that are part of an infinite family of
graphs, and so by constant we mean a value that is the same for all graphs in the family, regardless
of their size. Below we make the definitions more precise, and show their equivalence.
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Expander: no. of S’s neighbors = Omega(|S|) Grid is not an expander:
no. of S’s neighbors = O(|S|1/2)

Figure 21.1: In a combinatorial edge expander, every subset S of the vertices that is not too big has at least Ω(|S|)
edges to neighbors outside the set. The grid (and every other planar graph) is not a combinatorial edge expander as
a k × k square in the grid has only O(k) neighbors outside it.

21.2.1 The Algebraic Definition

The Algebraic definition of expanders is as follows:

Definition 21.6 ((n, d, λ)-expander graphs.)
If G is an n-vertex d-regular G with λ(G) ≤ λ for some number λ < 1 then we say
that G is an (n, d, λ)-graph.
A family of graphs {Gn}n∈N is an expander graph family if there are some constants
d ∈ N and λ < 1 such that for every n, Gn is an (n, d, λ)-graph.

Many text use simply the name (n, d, λ)-graphs for such graphs. Also, many text use un-
normalized adjacency matrices, and so have λ range between 0 and d. The smallest λ can be for
a d-regular n-vertex graph is (1 − o(1))2

√
d−1
d where o(1) denotes a function tending to 0 as the

number of vertices grows. This is called the Alon-Boppana bound and graphs meeting this bound
are called Ramanujan graphs (see Exercise 21.7 for a weaker bound).

Explicit constructions. As we will see in Section 21.2.2, it is not hard to show that expander
families exist using the probabilistic method. But this does not yield explicit constructions of
such graphs which are often needed for applications. We say that an expander family {Gn}n∈N
is explicit if there is a polynomial-time algorithm that on input 1n outputs the adjacency matrix
of Gn. We say that the family is strongly explicit if there is a polynomial-time algorithm that on
inputs 〈n, v, i〉 where v ∈ [n], i ∈ [d] outputs the (index of the) ith neighbor of v. Note that in the
strongly explicit case, the lengths of the algorithm’s inputs and outputs are O(log n) and so it runs
in time polylog(n).

Fortunately, several explicit and strongly explicit constructions of expander graphs are known.
Some of these constructions are very simple and efficient, but their analysis is highly non-trivial
and uses relatively deep mathematics.3 In Section 21.3 we will see a strongly explicit construction
of expanders with elementary analysis. This construction also introduces a tool that we’ll use to
derandomize the random-walk algorithm for UPATH in Section 21.4.

21.2.2 Combinatorial expansion and existence of expanders.

We now describe a combinatorial criteria that is roughly equivalent to Definition 21.6. One ad-
vantage of this criteria is that it makes it easy to prove that a non-explicit expander family exists
using the probabilistic method. It is also quite useful in several applications.

3An example is the following 3-regular expander graph: the vertices are the numbers 1 to p− 1 for some prime p,
and each number x is connected to x+ 1,x− 1 and x−1 (mod p).
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Definition 21.7 (Combinatorial (edge) expansion)
An n-vertex d-regular graph G = (V,E) is called an (n, d, ρ)-combinatorial edge
expander if for every subset S of vertices satisfying |S| ≤ n/2,

|E(S, S)| ≥ ρd|S| ,

where S denotes the complement of S and for subsets S, T of vertices, E(S, T )
denotes the set of edges i j with i ∈ S and j ∈ T .

Note that in this case the bigger ρ is the better the expander. We’ll loosely use the term
expander for any (n, d, ρ)-combinatorial edge expander with ρ a positive constant (independent of
n). Using the probabilistic method, one can prove the following theorem: (Exercise 21.8 asks you
to prove a slightly weaker version)

Theorem 21.8 (Existence of expanders)
Let ε > 0 be some constant. Then there exists d = d(ε) and N ∈ N such that for every n > N
there exists an (n, d, 1/2− ε)-combinatorial edge expander.

Theorem 21.8 is tight in the sense that there is no (n, d, ρ)-combinatorial edge expander for
ρ > 1/2 (Exercise 21.9). The following theorem relates combinatorial expansion with our previous
Definition 21.6

Theorem 21.9 (Combinatorial and algebraic expansion [Alon86])
1. If G is an (n, d, λ)-expander graph then it is an (n, d, (1−λ)/2)-combinatorial

edge expander.

2. If G is an (n, d, ρ)-combinatorial edge expander then its second largest eigen-

value (without taking absolute values) is at most 1− ρ2

2 . If furthermore G has

all self loops then it is an (n, d, 1− ε)-expander where ε = min
{

2
d ,

ρ2

2

}
.

The condition that G has all the self-loops of Theorem 21.9 is used again to rule out bipartite
graphs, which can be very good combinatorial edge expanders but have one eigenvalue equal to −1
and hence a spectral gap of zero.

21.2.3 Algebraic expansion implies combinatorial expansion.

The first part of Theorem 21.9 follows immediately from the following lemma:

Lemma 21.10 Let G be an (n, d, λ) graph, S a subset of G’s vertices and T its complement. Then

|E(S, T )| ≥ (1− λ)
d|S||T |
|S|+ |T |

.

Proof: Let x ∈ Rn denote the following vector:

xi =


+|T | i ∈ S
−|S| i ∈ T
0 otherwise

.

Note that ‖x‖2
2

= |S||T |2 + |T ||S|2 = |S||T |(|S|+ |T |) and x ⊥ 1.
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Let Z =
∑

i,j Ai,j(xi − xj)2. On the one hand Z = 2
d |E(S, T )|(|S| + |T |)2, since every edge i j

with i ∈ S and j ∈ T appears twice in this sum, each time contributing 1
d(|S|+ |T |)2 to the total.

On the other hand,

Z =
∑
i,j

Ai,jx
2
i − 2

∑
Ai,jxixj +

∑
i,j

Ai,jx
2
j = 2‖x‖2

2
− 2〈x, Ax〉

(using the fact that A’s rows and columns sum up to one). Since x ⊥ 1 and ‖Ax‖2 ≤ λ‖x‖2 , we
get that

1
d |E(S, T )|(|S|+ |T |)2 ≥ (1− λ)‖x‖2

2
.

Plugging in ‖x‖2
2

= |S||T |(|S|+ |T |) completes the proof. �

Algebraic expansion also allows us to obtain an estimate on the number of edges between
not-too-small subsets S and T , even if they are not disjoint:

Lemma 21.11 (Expander Mixing Lemma) Let G = (V,E) be an (n, d, λ)-expander graph. Let S, T ⊆
V , then ∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ λd√|S||T |
Note that d

n |S||T | is the number of edges one would expect between S and T if each vertex of
S chooses its d neighbors at random. We leave the proof of Lemma 21.11 as Exercise 21.10.

21.2.4 Combinatorial Expansion Implies Algebraic Expansion

We now prove the second part of Theorem 21.9. Let G = (V,E) be an n-vertex d-regular graph
such that for every subset S ⊆ V with |S| ≤ n/2, there are ρ|S| edges between S and S = V \ S,
and let A be G’s normalized adjacency matrix.

Let λ be the second largest eigenvalue of A (not taking absolute values). We need to prove that
λ ≤ 1 − ρ2/2. By the definition of an eigenvalue there exists a vector u ⊥ 1 such that Au = λu.
Write u = v + w where v is equal to u on the coordinates on which u is positive and equal to 0
otherwise, and w is equal to u on the coordinates on which u is negative, and equal to 0 otherwise.
(Since u ⊥ 1, both v and w are nonzero.) We can assume that v is nonzero on at most n/2 of its
coordinates (otherwise take −u instead of u). Let Z =

∑
i,j Ai,j(v

2
i − v2

j ). Part 2 of the theorem
(except for the “furthermore” clause) follows immediately from the following two claims:

Claim 1: Z ≥ 2ρ‖v‖2
2
.

Claim 2: Z ≤
√

8(1− λ)‖v‖2
2
.

Proof of Claim 1: Sort the coordinates of v so that v1 ≥ v2 ≥ · · · ≥ vn (with vi = 0 for
i > n/2). Then, using v2

i − v2
j =

∑j+1
k=i(v

2
k − v2

k+1),

Z =
∑
i,j

Ai,j(v2
i − v2

j ) = 2
∑
i<j

Ai,j

j−1∑
k=i

(v2
k − v2

k+1) .

Note that every term (v2
k − v2

k+1) appears in this sum once (with a weight of 2/d) per each edge
i j such that i ≤ k < j. Since vk = 0 for k > n/2, this means that

Z = 2
d

n/2∑
k=1

|E({1..k} , {k + 1..n})|(v2
k − v2

k+1) ≥ 2
d

n/2∑
k=1

ρk(v2
k − v2

k+1) ,
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by G’s expansion. But, rearranging the terms (and using the fact that vk = 0 for k > n/2), the
last sum is equal to

2
ddρ

n/2∑
k=1

kv2
k − (k − 1)v2

k = 2
n∑
k=1

v2
k = 2ρ‖v‖2

2
.

�

Proof of Claim 2: Since Au = λu and 〈v,w〉 = 0,

〈Av,v〉+ 〈Aw,v〉 = 〈A(v + w),v〉 = 〈Au,v〉 = 〈λ(v + w),v〉 = λ‖v‖2
2
.

Since 〈Aw,v〉 is not positive, 〈Av,v〉/‖v‖2
2
≥ λ, meaning that

1− λ ≥ 1− 〈Av,v〉
‖v‖2

2

=
‖v‖2

2
− 〈Av,v〉
‖v‖2

2

=

∑
i,j Ai,j(vi − vj)2

2‖v‖2
2

, (4)

where the last equality is due to
∑

i,j Ai,j(vi− vj)2 =
∑

i,j Ai,jv
2
i − 2

∑
i,j Ai,jvivj +

∑
i,j Ai,jv

2
j =

2‖v‖2
2
− 2〈Av,v〉. (We use here the fact that each row and column of A sums to one.)

Multiply both numerator and denominator of the last term in (4) by
∑

i,j Ai,j(v
2
i + v2

j ). The
new numerator is∑

i,j

Ai,j(vi − vj)2

∑
i,j

Ai,j(vi + vj)2

 ≥
∑

i,j

Ai,j(vi − vj)(vi + vj)

2

.

using the Cauchy-Schwartz inequality.4 Hence, using (a− b)(a+ b) = a2 − b2,

1− λ ≥

(∑
i,j Ai,j(v

2
i − v2

j )
)2

2‖v‖2
2

∑
i,j Ai,j(vi + vj)2

=
Z2

2‖v‖2
2

(∑
i,j Ai,jv

2
i + 2

∑
i,j Ai,jvivj +

∑
i,j Ai,jv

2
j

) =

Z2

2‖v‖2
2

(
2‖v‖2

2
+ 2〈Av,v〉

) ≥ Z2

8‖v‖4
2

,

where the last inequality is due to the fact that A is a symmetric stochastic matrix, and hence
‖Av‖2 ≤ ‖v‖2 for every v, implying that 〈Av,v〉 ≤ ‖v‖2

2
.

The “furthermore” part is obtained by noticing that adding all the self-loops to a d− 1-regular
graph is equivalent to transforming its normalized adjacency matrix A into the matrix d−1

d A+ 1
dI

where I is the identity matrix. Since A’s smallest eigenvalue (not taking absolute values) is at least
−1, the new smallest eigenvalue is at least −d−1

d + 1
d = −1 + 2

d .�

21.2.5 Error reduction using expanders.

Before constructing expanders, let us see one application for them in the area of probabilistic
algorithms. Recall that in Section [expand:sec:errorred] we saw that we can reduce the error of
a probabilistic algorithm from, say, 1/3 to 2−Ω(k) by executing it k times independently and taking
the majority value. If the algorithm utilized m random coins, this procedure will use m · k random
coins, and it seems hard to think of a way to save on randomness. Nonetheless, using expanders
we can obtain such error reduction using only m+O(k) random coins.

The idea is simple: take an expander graph G from a very explicit family that is an (M =
2m, d, 1/10)-expander graph for some constant d.5 Choose a vertex v1 at random, and take a length

4The Cauchy-Schwartz inequality says that for every two vectors x,y, 〈x,y〉 ≤ ‖x‖2‖y‖2 . Here we index over
(i, j), and use xi,j =

√
Ai,j(v2

i − v2
j ) and yi,j =

√
Ai,j(v2

i + v2
j ).

5Note that we can use graph powering to transform any explicit expander family into an expander family with
parameter λ < 1/10 (see also Section 21.3).
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k − 1 long random walk on G to obtain vertices v2, . . . , vk (note that choosing a random neighbor
of a vertex requires O(log d) = O(1) random bits). Invoke the algorithm k times using v1, . . . , vk
for the random coins (we identify the set [M ] of vertices with the set {0, 1}m of possible random
coins for the algorithm) and output the majority answer.

To keep things simple, we analyze here only the case of algorithms with one-sided error. For
example, consider an RP algorithm that will never output “accept” if the input is not in the
language, and for inputs in the language will output “accept” with probability 1/2 (the case of a
coRP algorithm is analogous). For such an algorithm the procedure will output “accept” if the
algorithm accepts even on a single set of coins vi. If the input is not in the language, the procedure
will never accept. If the input is in the language, then let B ⊆ [M ] denote the “bad” set of coins
on which the algorithms rejects. We know that |B| ≤ M

3 . Plugging in β = 1/3 and λ = 1/10 in
the following theorem immediately implies that the probability the above procedure will reject an
input in the language is bounded by 2−Ω(k):

Theorem 21.12 (Expander walks [derandomizedGraphProducts] )
Let G be an (n, d, λ) graph, and let B ⊆ [n] satisfying |B| ≤= βn for some β ∈ (0, 1).
Let X1, . . . , Xk be random variables denoting a k − 1-step random walk in G from
X1, where X1 is chosen uniformly in [n]. Then,

Pr[∀1≤i≤kXi ∈ B]
(∗)

≤ ((1− λ)
√
β + λ)k−1

Note that if λ and β are both constants smaller than 1 then so is the expression (1− λ)
√
β + λ.

Proof: For 1 ≤ i ≤ k, let Bi be the event that Xi ∈ B. Note that the probability (∗) we’re trying
to bound is

Pr[∧ki=1Bi] = Pr[B1] Pr[B2|B1] · · ·Pr[Bk|B1, . . . , Bk−1] .

Denote by B the linear transformation from Rn to Rn that “zeroes out” the coordinates that are
not in B. That is, for every i ∈ [n], (Bu)i = ui if i ∈ B and (Bu)i = 0 otherwise. It’s not hard to
verify that for every probability vector p over [n], Bp is a vector whose coordinates sum up to the
probability that a vertex i chosen according to p is in B. Furthermore, if we normalize the vector
Bp to sum up to one, we get a the probability vector corresponding to p conditioned on this event.

Thus, if we let 1 = (1/n, . . . , 1/n) denote the uniform distribution over [n] and pi ∈ RN be the
distribution of Xi conditioned on the events B1, . . . , Bi, then

p1 =
1

Pr[B1]
B1

p2 =
1

Pr[B2|B1]
1

Pr[B1]BAB1

and more generally

pi =
1

Pr[Bi|Bi−1 . . . B1] · · ·Pr[B1]
(BA)i−1B1 .

Since every probability vector p satisfies |p|1 = 1,

(∗) = |(B̂A)k−1B̂1|1 (5)

We bound the norm on the right-hand side of (5) by showing

‖(B̂A)k−1B1‖2 ≤
((1−λ)

√
β+λ)k−1
√
n

, (6)
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which suffices since for every v ∈ RN , |v|1 ≤
√
N‖v‖2 (see Note 21.1). To prove (6), we will use

the following definition and Lemma:

Definition 21.13 (Matrix norm)
For every matrix A, the matrix norm of A, denoted by ‖A‖, is defined as the maximum of ‖Av‖2
over all vectors v satisfying ‖v‖2 = 1.

Exercises 21.3 and 21.4 ask you to prove that the norm of every normalized adjacency matrix
is 1, and that for every two n by n matrices A,B, ‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖.

Lemma 21.14 Let A be a normalized adjacency matrix of an (n, d, λ)-expander graph G. Let J be
the adjacency matrix of the n-clique with self loops (i.e., Ji,j = 1/n for every i, j). Then

A = (1− λ)J + λC (7)

where ‖C‖ ≤ 1.

Note that for every probability vector p, Jp is the uniform distribution, and so this lemma
tells us that in some sense, we can think of a step on a (n, d, λ)-expander graph as going to the
uniform distribution with probability 1−λ, and to a different distribution with probability λ. This
is of course not completely accurate, as a step on a d-regular graph will only go the one of the d
neighbors of the current vertex, but we’ll see that for the purposes of our analysis, the condition
(7) will be just as good.6

Proof of Lemma 21.14: Indeed, simply define C = 1
λ(A − (1 − λ)J). We need to prove

‖Cv‖2 ≤ ‖v‖2 for very v. Decompose v as v = u + w where u = α1 for some α ∈ R and w ⊥ 1.
Since A1 = 1 and J1 = 1 we get that Cu = 1

λ(u − (1 − λ)u) = u. Now, let w′ = Aw. Then
‖w′‖2 ≤ λ‖w‖2 and, as we saw in the proof of Lemma 21.3, w′ ⊥ 1. In other words, the sum
of the coordinates of w is zero, meaning that Jw = 0. We get that Cw = 1

λw
′. Since w′ ⊥ u,

‖Cv‖2
2

= ‖u+ 1
λw
′‖2

2
= ‖u‖2

2
+‖ 1

λw
′‖2

2
≤ ‖u‖2

2
+‖w‖2

2
= ‖v‖2

2
, where we use twice the Pythagorean

theorem that for u ⊥ w, ‖u + w‖2
2

= ‖u‖2
2

+ ‖w‖2
2
. �

Returning to the proof of Theorem 21.12, we can write BA = B
(
(1 − λ)J + λC

)
, and hence

‖BA‖ ≤ (1 − λ)‖BJ‖ + λ‖BC‖. Since J ’s output is always a vector of the form α1, and it can

be easily verified that ‖B1‖2 =
√

βn
n2 =

√
β√
n

=
√
β‖1‖2 , ‖BJ‖ =

√
β. Also, because B is an

operation that merely zeros out some parts of its input, ‖B‖ ≤ 1 implying that ‖BC‖ ≤ 1. Thus,
‖BA‖ ≤ (1 − λ)

√
β + λ. This means that ‖(BA)k−1B1‖2 ≤ ((1 − λ)

√
β + λ)k−1

√
β√
n

, establishing
(6). �

The success of the error reduction procedure for two-sided error algorithms is obtained by the
following theorem, whose proof we omit:

Theorem 21.15 (Expander Chernoff Bound [??])
Let G be an (N, d, λ)-expander graph and B ⊆ [N ] with |B| = βN . Let X1, . . . , Xk

be random variables denoting a k − 1-step random walk in G (where X1 is chosen
uniformly). For every i ∈ [k], define Bi to be 1 if Xi ∈ B and 0 otherwise. Then,
for every δ > 0,

Pr
[
|
∑k

i=1Bi

k − β| > δ
]
< 2e(1−λ)δ2k/60

6Algebraically, the reason (7) is not equivalent to going to the uniform distribution in each step with probability
1− λ is that C is not necessarily a stochastic matrix, and may have negative entries.
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21.3 Explicit construction of expander graphs

We now show a construction of a very explicit expander graph family. The main tools in our
construction will be several types of graph products. A graph product is an operation that takes
two graphs G,G′ and outputs a graph H. Typically we’re interested in the relation between
properties of the graphs G,G′ to the properties of the resulting graph H. In this section we will
mainly be interested in three parameters: the number of vertices (denoted n), the degree (denoted
d), and the 2nd largest eigenvalue of the normalized adjacency matrix (denoted λ), and study how
different products affect these parameters. We then use these products to obtain a construction
of a strongly explicit expander graph family. In the next section we will use the same products to
show a deterministic logspace algorithm for undirected connectivity.

21.3.1 Rotation maps.

In addition to the adjacency matrix representation, we can also represent an n-vertex degree-d
graph G as a function Ĝ from [n] × [d] to [n] that given a pair 〈v, i〉 outputs u where the ith

neighbor of v in G. In fact, it will be convenient for us to have Ĝ output an additional value j ∈ [d]
where j is the index of v as a neighbor of u. Given this definition of Ĝ it is clear that we can invert
it by applying it again, and so it is a permutation on [n] × [d]. We call Ĝ the rotation map of G.
For starters, one may think of the case that Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is
the ith neighbor of v). In this case we can think of Ĝ as operating only on the vertex. However,
we will need the more general notion of a rotation map later on.

We can describe a graph product in the language of graphs, adjacency matrices, or rotation
maps. Whenever you see the description of a product in one of this forms (e.g., as a way to map
two graphs into one), it is a useful exercise to work out the equivalent descriptions in the other
forms (e.g., in terms of adjacency matrices and rotation maps).

21.3.2 The matrix/path product

G: (n,d,λ)-graph G’: (n,d’,λ’)-graph G’G: (n,dd’,λλ’)-graph

For every two n vertex graphs G,G′ with degrees d, d′ and adjacency matrices A,A′, the graph
G′G is the graph described by the adjacency matrix A′A. That is, G′G has an edge (u, v) for every
length 2-path from u to v where the first step in the path is taken on en edge of G and the second
is on an edge of G′. Note that G has n vertices and degree dd′. Typically, we are interested in
the case G = G′, where it is called graph squaring. More generally, we denote by Gk the graph
G · G · · ·G (k times). We have already encountered this case before in Lemma 21.3, and similar
analysis yields the following lemma (whose proof we leave as Exercise 21.6):

Lemma 21.16 (Matrix product improves expansion) λ(G′G) ≤ λ(G′)λ(G′)

Note that one can easily compute the rotation map of G′G using the rotation maps of G and
G′.
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21.3.3 The tensor product

G: (n,d,λ)-graph G’: (n’,d’,λ’)-graph GOG’: (nn’,dd’,max{λ,λ’})-graphx

Let G and G′ be two graphs with n (resp n′) vertices and d (resp. d′) degree, and let Ĝ :
[n] × [d] → [n] × [d] and Ĝ′ : [n′] × [d′] → [n′] × [d′] denote their respective rotation maps. The
tensor product of G and G′, denoted G ⊗ G′, is the graph over nn′ vertices and degree dd′ whose
rotation map Ĝ⊗G′ is the permutation over ([n]× [n′])× ([d]× [d′]) defined as follows

Ĝ⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 ,

where (u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of G⊗G′ is pairs of vertices,
one from G and the other from G′, and taking a the step 〈i, j〉 on G⊗G′ from the vertex 〈u, v〉 is
akin to taking two independent steps: move to the pair 〈u′, v′〉 where u′ is the ith neighbor of u in
G and v′ is the ith neighbor of v in G′.

In terms of adjacency matrices, the tensor product is also quite easy to describe. If A = (ai,j)
is the n× n adjacency matrix of G and A′ = (a′i′,j′) is the n′ × n′ adjacency matrix of G′, then the
adjacency matrix of G⊗G′, denoted as A⊗A′, will be an nn′×nn′ matrix that in the 〈i, i′〉th row
and the 〈j, j′〉 column has the value ai,j · a′i′,j′ . That is, A⊗A′ consists of n2 copies of A′, with the
(i, j)th copy scaled by ai,j :

A⊗A′ =


a1,1A

′ a1,2A
′ . . . a1,nA

′

a2,1A
′ a2,2A

′ . . . a2,nA
′

...
...

an,1A
′ an,2A

′ . . . an,nA
′


The tensor product can also be described in the language of graphs as having a cluster of n′

vertices in G⊗G′ for every vertex of G. Now if, u and v are two neighboring vertices in G, we will
put a bipartite version of G′ between the cluster corresponding to u and the cluster corresponding
to v in G. That is, if (i, j) is an edge in G′ then there is an edge between the ith vertex in the
cluster corresponding to u and the jth vertex in the cluster corresponding to v.

Lemma 21.17 (Tensor product preserves expansion) Let λ = λ(G) and λ′ = λ(G′) then λ(G⊗G′) ≤
max{λ, λ′}.

One intuition for this bound is the following: taking a T step random walk on the graph G⊗G′
is akin to taking two independent random walks on the graphs G and G′. Hence, if both walks
converge to the uniform distribution within T steps, then so will the walk on G⊗G′.
Proof of Lemma 21.17: Given some basic facts about tensor products and eigenvalues this is
immediate since if λ1, . . . , λn are the eigenvalues of A (where A is the adjacency matrix of G) and
λ′1, . . . , λ

′
n′ are the eigenvalues of A (where A′ is the adjacency matrix of G′), then the eigenvalues

of A ⊗ A′ are all numbers of the form λi · λ′j , and hence the largest ones apart from 1 are of the
form 1 · λ(G′) or λ(G) · 1 (see also Exercise 21.19). �
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We note that one can show that λ(G⊗G′) ≤ λ(G) + λ(G′) without relying on any knowledge
of eigenvalues (see Exercise 21.20). This weaker bound suffices for our applications.

21.3.4 The replacement product

G: (n,D,1-ε)-graph G’: (D,d,1-ε’)-graph GOG’: (nD,2d,1-εε’/4)-graphR

In both the matrix and tensor products, the degree of the resulting graph is larger than the
degree of the input graphs. The following product will enable us to reduce the degree of one of the
graphs. Let G,G′ be two graphs such that G has n vertices and degree D, and G′ has D vertices
and degree d. The balanced replacement product (below we use simply replacement product for
short) of G and G′ is denoted by G©R G′ is the nn′-vertex 2d-degree graph obtained as follows:

1. For every vertex u of G, the graph G©R G′ has a copy of G′ (including both edges and vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges between the ith vertex
in the copy of G′ corresponding to u and the jth vertex in the copy of G′ corresponding to v,
where i is the index of v as a neighbor of u and j is the index of u as a neighbor of v in G.
(That is, taking the ith edge out of u leads to v and taking the jth edge out of v leads to u.)

(Some texts reserve the term replacement product for the variant that uses only a single edge
(as opposed to d parallel edges) in Item 2 above. The addition of parallel edges ensures that a
random step from a vertex v in G©R G′ will move to a neighbor within the same cluster and a
neighbor outside the cluster with the same probability.)

The replacement product also has a simple description in terms of rotation maps: since G©R G′
has nD vertices and 2d degree, its rotation map ˆG©R G′ is a permutation over ([n]× [D])× ([d]×
{0, 1}) and so can be thought of as taking four inputs u, v, i, b where u ∈ [n], v ∈ [D], i ∈ [d] and
b ∈ {0, 1}. If b = 0 then it outputs u, Ĝ′(v, i), b and if b = 1 then it outputs Ĝ(u, v), i, b. That is,
depending on whether b is equal to 0 or 1, the rotation map either treats v as a vertex of G′ or as
an edge label of G.

In the language of adjacency matrices the replacement product is described as follows:

A©R A′ = 1/2Â+ 1/2(In ⊗A′) , (8)

where A,A′ denote the normalized adjacency matrices of G and G′ respectively, and Â denotes the
permutation matrix corresponding to the rotation map of G. That is, Â is an (nD)× (nD) matrix
whose (i, j)th column is all zeroes except a single 1 in the (i′, j′)th place where (i′, j′) = Ĝ(i, j).

If D � d then the replacement product’s degree will be significantly smaller than G’s degree.
The following Lemma shows that this dramatic degree reduction does not cause too much of a
deterioration in the graph’s expansion:

Lemma 21.18 (Expansion of replacement product) If λ(G) ≤ 1−ε and λ(H) ≤ 1−δ then λ(G©RH) ≤
1− εδ2

24 .

The intuition behind Lemma 21.18 is the following: Think of the input graph G as a good
expander whose only drawback is that it has a too high degree D. This means that a k step random
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walk on G′ requires O(k logD) random bits. However, as we saw in Section 21.2.5, sometimes we
can use fewer random bits if we use an expander. So a natural idea is to generate the edge labels for
the walk by taking a walk using a smaller expander G′ that has D vertices and degree d� D. The
definition of G©R G′ is motivated by this intuition: a random walk on G©R G′ is roughly equivalent
to using an expander walk on G′ to generate labels for a walk on G. In particular, each step a
walk over G©R G′ can be thought of as tossing a coin and then, based on its outcome, either taking
a a random step on G′, or using the current vertex of G′ as an edge label to take a step on G.
Another way to gain intuition on the replacement product is to solve Exercise 21.21, that analyzes
the combinatorial (edge) expansion of the resulting graph as a function of the edge expansion of
the input graphs.

Proof of Lemma 21.18: It suffices to show that λ(G©R H)3 ≤ 1− εδ2

8 . Since for every graph F ,
λ(F k) = λ(F )k, we will do so by showing λ((G©R H)3) ≤ 1 − εδ2

8 . Let A be the n × n normalized
adjacency matrix of G (with Â the (nD)× (nD) permutation matrix corresponding to the rotation
map Ĝ), let B be the D×D normalized adjacency matrix of H, and let C be the adjacency matrix
of (G©R H)3. Then, (8) implies that

C = (1/2Â+ 1/2(In ⊗B))3 , (9)

Now Lemma 21.14 implies that B = (1 − δ)B′ + δJD for some matrix B′ with norm at most 1
(where JD is the D ×D all 1/D matrix). We plug this into (9), expand all terms and then collect
together all the terms except for the one corresponding to 1/2δ(In⊗J)1/2Â1/2δ(In⊗J). The reader
can verify that all terms correspond to matrices of norm at most 1 and hence (9) becomes

C = (1− δ2

8 )C ′ + δ2

8 (In ⊗ JD)Â(In ⊗ JD) , (10)

where C ′ is some (nD)× (nD) matrix of norm at most 1. The lemma will follow from the following
claim:

Claim: (In ⊗ JD)Â(In ⊗ JD) = A⊗ JD
Proof: Indeed, the left-hand side is the normalized adjacency matrix of the graph on nD vertices
on which a step from a vertex (i, j) corresponds to: 1) choosing a random k ∈ [D] 2) letting i′ be
the kth neighbor of i in G 3) choosing j′ at random in [D] moving to the vertex (i, k). We can
equivalently describe this as going to a random neighbor i′ of i in G and choosing j′ at random in
[D], which is the graph corresponding to the matrix A⊗ JD. �

The claim concludes the proof since λ(A ⊗ JD) ≤ max{λ(A), λ(JD)} = max{λ(A), 0}. The
lemma follows by plugging this into (10) and using the fact that λ(C ′) ≤ 1 for every matrix of
norm at most 1. �

21.3.5 The actual construction.

We now use the three graph products of described above to show a strongly explicit construction
of an expander graph family. That is, we prove the following theorem:

Theorem 21.19 (Explicit construction of expanders)
There exists a strongly-explicit λ, d-expander family for some constants d and λ < 1.

Note that using the matrix/graph product Theorem 21.19 can be improved to yield a strongly-
explicit λ, d-expander family for every λ > 0 (albeit at the expense of allowing d to be an arbitrarily
large constant depending on λ.
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Proof: We will start by showing something slightly weaker: a very explicit family of graphs {Gk}
where Gk is not a graph on k vertices but on roughly ck vertices for some constant c. That is,
rather than showing a family of graphs for every size n, we will only show a family of graphs for
certain sizes n. We will then sketch how the construction can be improved to yield a graph family
containing a graph of every size n.

The construction is recursive: we start by a finite size graph G1 (which we can find using brute
force search), and construct the graph Gk from the graph Gk−1. On a high level the construction is
as follows: each of the three product will serve a different purpose in the construction. The Tensor
product allows us to take Gk−1 and increase its number of vertices, at the expense of increasing
the degree and possibly some deterioration in the expansion. The replacement product allows us to
dramatically reduce the degree at the expense of additional deterioration in the expansion. Finally,
we use the Matrix/Path product to regain the loss in the expansion at the expense of a mild increase
in the degree. The actual definition is as follows:

• Let H be a (D = (2d)100, d, 0.01)-expander graph, which we can find using brute force
search. (We choose d to be a large enough constant that such a graph exists) We let G1

be a ((2d)100, 2d, 1/2)-expander graph and G2 be a ((2d)200, 2d, 1/2)-expander graphs (again,
such graphs can be easily found via brute force).

• For k > 2 define
Gk =

(
G
b k−1

2 c
⊗G

b k−1
2 c

)
.

We prove the following claim:

Claim: For every k, Gk is a ((2d)100k, 2d, 1 − 1/50)-expander graph. Furthermore, there is a
poly(k)-time algorithm that given a label of a vertex i in Gk and an index j in [2d] finds the jth

neighbor of i in Gk.

Proof: We prove the first part by induction. Verify directly that it holds for k = 1, 2. For k > 2,
if we let nk be the number of vertices of Gk then nk = n2

b k−1
2 c

(2d)100. By induction we assume

n
b k−1

2 c
= (2d)100b k−1

2 c which implies that nk = (2d)100k (using the fact that 2b k−1
2 c+ 1 = k). It’s

also easy to verify that Gk has degree 2d for every j: if G has degree 2d then G ⊗ G has degree
(2d)2, (G⊗G)50) has degree (2d)100 and (G⊗G)50)©R H has degree (2d). The eigenvalue analysis
also follows by induction: if λ(G) ≤ 1−1/50 then λ(G⊗G)50 ≤ 1/e < 1/2. Hence, by Lemma 21.18,
λ((G⊗G)50©R H) ≤ 1− 1/2(0.99)2/24 ≤ 1− 1/50.

For the furthermore part, note that there is a natural algorithm to compute the neighborhood
function of Gk that makes 100 recursive calls to the neighborhood function of G

b k−1
2 c

, thus running

in time roughly nlog 100. �

The above construction and analysis yields an expander graph family containing an n vertex
graph for every n of the form ck for some constant c. The proof of Theorem 21.19 is completed by
observing that one can transform an (n, d, λ)-expander graph to an (n′, c2d′, λ)-expander graph for
any n/c ≤ n′ ≤ n by joining together into a “mega-vertex” sets of at most c vertices (Exercise 21.12).
�

There are other known constructions of expanders that are more efficient in terms of computa-
tion time and relation between degree and the parameter λ than the product-based construction
above. However, the proofs for these constructions are often more complicated and require deeper
mathematical tools. Also, the replacement product (and its close cousin, the zig-zag product) have
found applications beyond the constructions of expander graphs. One such application is the deter-
ministic logspace algorithm for undirected connectivity described in the next section. The replace-
ment product also found another application in the construction of combinatorial expanders with
a greater expansion of small sets that what is implied by the parameter λ [CapalboReVaWi02].
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21.4 Deterministic logspace algorithm for undirected connectiv-
ity.

This section describes a recent result of Reingold, showing that at least the most famous randomized
logspace algorithm, the random walk algorithm for the problem UPATH of s-t-connectivity in
undirected graphs (see Chapter 7) can be completely “derandomized.”

Theorem 21.20 (Reingold’s theorem [Reingold05])
UPATH ∈ L.

Reingold describes a set of poly(n) walks starting from s such that if s is connected to t then
one of the walks is guaranteed to hit t. The existence of such a small set of walks can be shown
using the probabilistic method and Lemma 21.11. The point is that Reingold’s enumeration of
walks can be carried out deterministically in logspace.

21.4.1 Outline of idea.

As before we are interested in undirected graphs that may have parallel edges. When analyzing
will assume that the input graph for the s-t connectivity problem is d-regular for say d = 4. This
is without loss of generality: if a vertex has degree d′′ < 3 we add a self-loop of multiplicity to
bring the degree up to d, and if the vertex has degree d′ ≥ 3 we can replace it by a cycle of d′

vertices, and each of the d′ edges that were incident to the old vertex then attach to one of the cycle
nodes. Of course, a logspace machine does not have space to store the modified graph, but it can
pretend that these modifications have taken place, since it can perform them on the fly whenever
it accesses the graph. (Formally speaking, the transformation is implicitly computable in logspace
as per Definition 4.16.) In fact, the proof below will perform a series of other local modifications
on the graph, each with the property that the logspace algorithm can perform them on the fly.

Recall that checking connectivity in expander graphs is easy. Specifically, if every connected
component in G is an expander, then there is a number ` = O(log n) such that if s and t are
connected then they are connected with a path of length at most `. Indeed, Lemma 21.3 implies
that in every n-vertex regular graph G, the distribution of the `th vertex in a random walk is within√
nλ` statistical (or L1) distance from the uniform distribution. In particular this means that if

each connected component H of G is an expander graph, having λ(H) bounded away from 1, then
a random walk of length ` = O(log n) from a vertex u in H will reach every vertex of H with
positive probability.

The idea behind Reingold’s algorithm is to transform the graph G (in an implicitly computable
in logspace way) to a graph G′ such that every connected component in G becomes an expander
in G′, but two vertices that were not connected will stay unconnected.

21.4.2 The logspace algorithm for connectivity (proof of Theorem 21.20)

By adding more self-loops we may assume that the input graph G is of degree d50 for some constant
d that is sufficiently large to ensure the existence of a (d50, d/2, 0.01)-expander graph H. Since the
size of H is some constant, we assume the algorithm has access to it (either H could be ”hardwired”
into the algorithm or the algorithm could perform brute force search to discover it). Let G0 = G
and for k ≥ 1, define Gk = (Gk−1©R H)50, where ©R denotes the balanced replacement product
defined in Section 21.3.4.

If Gk−1 is an N -vertex graph with degree d50, then Gk−1©R H is a d50N -vertex graph with degree
d and thus Gk = (Gk−1©R H)50 is a d50N -vertex graph with degree d. Note also that if two vertices
were connected (resp., disconnected) in Gk−1, then they are still connected (resp., disconnected) in
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Gk. The key observation that the graph G10 logn is an expander, and therefore an easy instance of
UPATH. Specifically, we have:

Claim: For every k, Gk is an (d50kn, d20,max{1 − 1/20, 2k/(12n2)})-graph, where n denotes the
number of vertices in G = G0.

Proof: Indeed, by Lemmas 21.16 and 21.18, for every ε < 1/20 and D-degree graph F , if λ(F ) ≤
1−ε then λ(F©R H) ≤ 1−ε/25 and hence λ

(
(F©R H)50

)
≤ 1−2ε. By Lemma 21.4, every connected

component of G has expansion parameter at most 1− 1
12n2 (note that n is at least as large as the

number of vertices in the connect component). It follows that for k = 10 log n, in the graph Gk
every connected component has expansion parameter at most max{1−1/20, 2k/(12n2)} = 1−1/20.
�

Since G10 logn is an expander, to find whether a pair of vertices s, t are connected in G10 logn we
simply need to enumerate over all ` = O(log n)-long paths from s in Gk and see whether any one
of these hits t. The catch is of course that the graph we are given is G, not G10 logn. Therefore the
question is whether for k = 10 log n, given a description of a vertex s in Gk and an index i ∈ [d20],
we can compute the ith neighbor of s in Gk using only logarithmic space. (Once we can perform
a single step of Gk it’s easy to perform ` steps in logspace as well by repeating them one after the
other, and reusing the same space to compute each step.)

The graph Gk is equal to (Gk−1©R H)50 and thus it suffices to show that we can take a single
step in the graph Gk−1©R H in logspace (we can then repeat the same process for 50 times). Now
by the definition of the replacement product, a vertex in Gk−1©R H is represented by a pair 〈u, v〉
where u is a vertex of Gk−1 and v is a vertex of H. The index of a neighbor of 〈u, v〉 is represented
by a pair 〈b, i〉 where b ∈ {0, 1} and i ∈ [d/2]. If b = 0 then the 〈b, i〉th neighbor of 〈u, v〉 is 〈u, v′〉
where v′ is the ith neighbor of v′ in H. If b = 1 then the 〈b, i〉th neighbor of 〈u, v〉 is the pair 〈u′, v′〉
denoting the result of applying Gk−1’s rotation map to 〈u, v〉. (That is, u′ is the vth neighbor of
u in Gk−1, and v′ is the index of u as a neighbor of u′ in Gk−1.) This description already implies
an obvious recursive algorithm to compute the rotation map of Gk. Letting sk denotes the space
needed to compute a rotation map of Gk by this algorithm, we see that sk satisfies the equation
sk = sk−1 +O(1), implying that s10 logn = O(log n).7�

21.5 Weak Random Sources and Extractors

Suppose, that despite any philosophical difficulties, we are happy with probabilistic algorithms,
and see no need to “derandomize” them, especially at the expense of some unproven assumptions.
We still need to tackle the fact that real world sources of randomness and unpredictability rarely, if
ever, behave as a sequence of perfectly uncorrelated and unbiased coin tosses. Can we still execute
probabilistic algorithms using real-world “weakly random” sources?

21.5.1 Min Entropy

For starters, we need to define what we mean by a weakly random source.

Definition 21.21
Let X be a random variable. The min entropy of X, denoted by H∞(X), is the largest real number
k such that Pr[X = x] ≤ 2−k for every x in the range of X.

If X is a distribution over {0, 1}n with H∞(X) ≥ k then it is called an (n, k)-source.

7When implementing the algorithm one needs to take care not to make a copy of the input when invoking
the recursive procedure, but rather have all procedure operate on a globally accessible memory that contains the
index k and the vertex and edge labels. For more details see the original paper [Reingold05] or [goldreichbook,
Section 5.2.4].
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It is not hard to see that if X is a random variable over {0, 1}n then H∞(X) ≤ n with H∞(X) =
n if and only if X is distributed according to the uniform distribution Un. Our goal in this section is
to be able to execute probabilistic algorithms given access to a distribution X with H∞(X) as small
as possible. It can be shown that min entropy is a minimal requirement in the sense that in general,
to execute a probabilistic algorithm that uses k random bits we need access to a distribution X
with H∞(X) ≥ k (see Exercise [expand:ex:minentnec]).

Example 21.22
Here are some examples for distributions X over {0, 1}n and their min-entropy:

• (Bit fixing and generalized bit fixing sources) If there is subset S ⊆ [n] with |S| = k such
that X’s projection to the coordinates in S is uniform over {0, 1}k, and X’s projection to
[n] \ S is a fixed string (say the all-zeros string) then H∞(X) = k, we call such a random
variable a bit-fixing source. The same holds if X’s projection to [n]\S is a fixed deterministic
function of its projection to S, in which case we say that X is a generalized bit-fixing source.
For example, if the bits in the odd positions of X are independent and uniform and for every
even position 2i, X2i = X2i−1 then H∞(X) = d n2 e. This may model a scenario where we
measure some real world data at too high a rate (think of measuring every second a physical
event that changes only every minute).

• (Linear subspaces) If X is the uniform distribution over a linear subspace of GF(2)n of
dimension k, then H∞(X) = k. (In this case X is actually a generalized bit-fixing source —
can you see why?)

• (Biased coins) If X is composed of n independent coins, each outputting 1 with probability
δ < 1/2 and 0 with probability 1− δ, then as n grows, H∞(X) tends to H(δ)n where H is the
Shannon entropy function. That is, H(δ) = δ log 1

δ + (1− δ) log 1
1−δ .

• (Santha-Vazirani sources) If X has the property that for every i ∈ [n], and every string
x ∈ {0, 1}i−1, conditioned on X1 = x1, . . . , Xi−1 = xi−1 it holds that both Pr[Xi = 0] and
Pr[Xi = 1] are between δ and 1− δ then H∞(X) ≥ H(δ)n. This can model sources such as
stock market fluctuations, where current measurements do have some limited dependence on
the previous history.

• (Uniform over subset) If X is the uniform distribution over a set S ⊆ {0, 1}n with |S| = 2k

then H∞(X) = k. As we will see, this is a very general case that “essentially captures” all
distributions X with H∞(X) = k.

We see that min entropy is a pretty general notion, and distributions with significant min
entropy can model many real-world sources of randomness.

Next we formalize what it means to extract random —more precisely, almost random— bits from
an (n, k) source. We will use the notion of statistical distance (see Section A.3.6 in the appendix)
to quality when two distributions are close.

21.5.2 Definition of randomness extractors

We can now define randomness extractors - these are functions that transform an (n, k) source into
an almost uniform distribution. The extractor uses a small number of additional truly random bits,
denoted by d in the definition below.
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Definition 21.23 (Randomness extractors)
A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor if for any (n, k)-
source X, the distribution Ext(X,Ud) is ε-close to Um. (For every `, U` denotes the
uniform distribution over {0, 1}`.)

Why an additional input? Our stated motivation for extractors is to execute probabilistic
algorithms without access to perfect unbiased coins. Yet, it seems that an extractor is not sufficient
for this task, as we only guarantee that its output is close to uniform if it is given an additional
input (called the seed of the extractor) that is uniformly distributed. First, we note that the
requirement of an additional input is necessary: for every function Ext : {0, 1}n → {0, 1}m and
every k ≤ n− 1 there exists an (n, k)-source X such that the first bit of Ext(X) is constant (i.e, is
equal to some value b ∈ {0, 1} with probability 1), and so is at least of statistical distance 1/2 from
the uniform distribution (Exercise 21.13). Second, if the length t of the second input is sufficiently
short (e.g., t = O(log n)) then, for the purposes of simulating probabilistic algorithms, we can
do without any access to true random coins, by enumerating over all the 2t possible inputs (see
Section [expand:subsec:extractsim]). Clearly, d has to be somewhat short for the extractor to
be non-trivial: for d ≥ m, we can have a trivial extractor that ignores its first input and outputs
the second input.

21.5.3 Existence proof for extractors.

It turns out that at least if we ignore issues of computational efficiency, very good extractors exist:

Theorem 21.24
For every k, n, ε, there exists a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}k with d = log n +
2 log(1/ε) +O(1)

Proof: Call an (n, k) source X flat if X is the uniform distribution over a 2k-sized subset of {0, 1}n.
In Exercise 19.7 it is shown that every (n, k) source can be expressed as a convex combination of
flat (k, n)-sources, which means that it suffices to show a function Ext such that Ext(X,Ud) is close
to the uniform distribution when X is an (n, k)-flat source.

We will prove the existence of such an extractor by the probabilistic method, choosing Ext as
a random function from {0, 1}n × {0, 1}d → {0, 1}k. Let X be an (n, k) flat source and let f be a
function from {0, 1}k → {0, 1}. If we choose Ext at random then the expectation E[f(Ext(X,Ud))] is
obtained by evaluating f on 2k×2d random points, and hence by the Chernoff bound the probability
that this expectation deviates from E[f(Uk)] by more than ε is bounded by 2−2k+d/4ε2 . This means
that if d > log n+ 2 log(1/e) + 3 then this probability is bounded by 2−2n(2k). But the number of
flat distributions is at most (2n)2k

and the number of functions from {0, 1}k → {0, 1} is 22k
and

hence the union bound implies that there is a choice of Ext guaranteeing

|E[f(Ext(X,Ud))]− E[f(Uk)]| < ε

for every (n, k)-flat source and function f : {0, 1}k → {0, 1}. In other words, Ext(X,Ud) is ε-close
to Uk for every (n, k)-flat source and hence for every (n, k)-source. �

This extractor is optimal in the sense that there is an absolute constant c such that every
(k, ε) extractor that is non-trivial (has output longer than seed length and ε < 1/2) must satisfy
d ≥ log(n− k) + 2 log(1/ε)− c [NisanZu96, RadhakrishnanTa00].
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21.5.4 Extractors based on hash functions

The non-explicit extractor of Theorem 21.24 is not very useful: for most applications we need
efficiently computable extractors. One such efficiently computable extractor (though with very bad
parameters) can be obtained using pairwise independent hash functions.

Recall that a collectionH of functions from {0, 1}n to {0, 1}m is pairwise independent if for every
x 6= x′ in {0, 1}n and y, y′ ∈ {0, 1}m, the probability that h(x) = y and h(x′) = y′ for a random
h ∈

R
H is 2−2m (see Section 8.2.1). There are efficiently computable such collections one can choose

a random function in H by picking a string at random from {0, 1}d (for d = n+m). We will use h to
denote both this string and the function. We define an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m,
where m = k − 2 log(1/ε) as follows:

Ext(x, h) = h(x) ◦ h, (11)

where ◦ denotes concatenation of strings. Its analysis is given by the following famous lemma:

Lemma 21.25 (Leftover hash lemma [ILL89, BC??]) δ(Ext(X,Ud), Um+d) ≤ ε

Proof: We study the collision probability of Ext(X,Ud). The probability that h(x)◦h = h′(x′)◦h′
for random h, h′ ∈

R
H and x, x′ ∈

R
X is bounded by the probability that h = h′ (which is equal

to 2−d) times the probability that h(x) = h(x′). The latter is bounded by 2−k (a bound on the
probability that x = x′ implies by the fact that X is a (k, n)-source) plus 2−m (the probability that
h(x) = h(x′) for a random h ∈

R
H and x 6= x′). Thus the collision probability of Ext(X,Ud) is at

most 2−d(2−k + 2−m) = 2−(d+m) + 2−d−k.
Now, treat this distribution as a probability vector v ∈ R2d+m

. Then the collision probability is
precisely the L2-norm of v squared and hence ‖v−1‖2 ≤ 2−(d−k)/2, where 1 denotes the probability
vector corresponding to the uniform distribution Um+d. Applying the relation between the L1 and
L2 norms we get that

δ(Ext(X,Ud), Um+d) = 1/2|v − 1|1 ≤ 1/22(m+d)/2‖v − 1‖2 ≤ 1/22k/2+d/2−log(1/ε)2−k/2−d/2 < ε .

�

Lemma 21.26 (Leftover hash lemma) If x is chosen from a distribution on {0, 1}n with min-entropy
at least k/δ and H has collision error δ, then h(X) ◦ h has distance at most

√
2δ to the uniform

distribution.

Proof: Left as exercise. (Hint: use the relation between the L2 and L1 norms �

21.5.5 Extractors based on random walks on expanders

We can also use construct explicit extractors using expander graphs:

Lemma 21.27 Let ε > 0. For every n and k ≤ n there exists a (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}t → {0, 1}n where t = O(n− k + log 1/ε).

Proof: Suppose X is an (n, k)-source and we are given a sample a from it. Let G be a (2n, d, 1/2)-
expander graph for some constant d (see Definition 21.6 and Theorem 21.19).

Let z be a truly random seed of length t = 10 log d(n − k + log 1/ε) = O(n − k + log 1/ε). We
interpret z as a random walk in G of length 10(n− k+ log 1/ε) starting from the node whose label
is a. (That is, we think of z as 10(n − k + log 1/ε) labels in [d] specifying the steps taken in the
walk.) The output Ext(a, z) of the extractor is the label of the final node on the walk.
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We have ‖X−1‖22 ≤ ‖X‖22 =
∑

a Pr[X = a]2, which is at most 2−k by Lemma [expand:lem:collprob]
since X is an (n, k)-source. Therefore, after a random walk of length t the distance to the uniform
distribution is (by the upper bound in ([expand:eqn:expandeexpand])):

‖M tX − 1
2N

1‖1 ≤ λt2‖X −
1

2N
1‖2
√

2N ≤ λt22(N−k)/2.

When t is a sufficiently large multiple of N − k + log 1/ε, this distance is smaller than ε. �

21.5.6 Extractors from pseudorandom generators

For many years explicit constructions of randomness extractors fell very far behind the parameters
achieved by the optimal non-explicit construction of Theorem 21.24. In particular, researchers had
no construction of, say, an (n1/3, 1/10)-extractor with O(log n) seed size and say n1/4 bits of output
(parameters which are useful if one wants to be able to simulate a probabilistic polynomial-time
algorithm that uses m random bits using an (m1.4,m4)-source). Then in 1999 Trevisan showed
a vastly improved extractor construction. But what was more stunning than the result itself was
Trevisan’s technique: he showed that pseudorandom generators such as the ones we’ve seen in
chapters 20 and 19, when viewed in the right way, are in fact also randomness extractors. This was
very surprising, since these pseudornadom generators rely on hardness assumptions (such as the
existence of a function in E with high circuit complexity). Thus it would seem that these generators
will not be useful in the context of randomness extractors, where we are looking for constructions
with unconditional analysis and are not willing to make any unproven assumptions.

What Trevisan noticed is that while we normally think of a pseudorandom generator G as
having only one input, we can think of it as a function that takes two inputs: a short seed and
the truth table of a supposedly hard function f . While our theorems state that the pseudorandom
generator works if f is a hard function, the proofs of these theorems are actually constructive: they
transform a distinguisher D that distinguishes between the generator’s output and a random string
into a small circuit A that computes the function f . In fact, the circuit A only uses the distinguisher
D as a black-box. Therefore we can apply this transformation even when the distinguisher D is an
arbitrary function that does not necessarily have a small function.

This means that we can rephrase the result on pseudorandom generators from worst-case as-
sumptions (Theorem 19.1) as follows:

Theorem 21.28 (Theorem 19.1, constructive version)
For every time-constructible function S : N→ N, there is a constant c and algorithms
G and R satisfying the following:

• On input a function f : {0, 1}` → {0, 1} and a string z ∈ {0, 1}c`, algorithm
G runs in 2O(`) time and outputs a string of length m = S(`)1/c, which we
denote by Gf (z).

• If D : {0, 1}m → {0, 1} is a function such that
∣∣E[D(Gf (Uc`))]− E[D(Um)]

∣∣ >
1/10 then there is an advice string a of length at most S(`)1/4 such that on every
input x, RD(a, x) = f(x) and furthermore R runs in time at most S(`)1/4.

The algorithm R is the algorithm for the reduction that is implicit in the proof of all the
pseudorandom generators that we’ve seen. If we know that f ’s circuit complexity is at least S(`)
then the existence of R means that there is no S(`)1/4-sized distinguisher between G(Uc`) and
Um. Looking at pseudorandom generators in this way, Trevisan saw that they can be viewed as
“extracting” or “distilling” the hardness that is present in the function f into a random-looking
output. Thus he proved the following lemma:
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Lemma 21.29 For every k, n let Ext be the function that on input f ∈ {0, 1}n and z ∈ {0, 1}c logn

outputs Gf (z), where G is the generator obtained by Theorem 19.1 for S = k and considering f as
a function f : {0, 1}` → {0, 1} for ` = log n. Then, Ext is a (k, 1/5) generator.

Proof: Suppose otherwise, that there is a (k, n)-source X and a function D that distinguishes
between Ext(X,Uc`) and Um with bias at least 1/5. Then, with probability at least 1/10 over f ∈

R
X,

D distinguishes between Gf (Uc`) and Um with bias at least 1/10. Let’s call an f for which this
happens “bad”. Note that for every bad f there exists an advice string a ∈ {0, 1}k

1/4

such that f
is computed by the algorithm x 7→ RD(a, x). This means that the number of bad f ’s is at most
2k

1/4
. But since X is a k-source this means that the probability of a random f being bad is at most

2k
1/4

2−k � 1/10, and hence we’ve arrived at a contradiction. �

21.6 Pseudorandom generators for space bounded computation

We now show how extractors can be used to obtain a pseudorandom generator for space-bounded
randomized computation, which allows randomized logspace computations to be run with O(log2 n)
random bits. We stress that this generator does not use any unproven assumptions.

Theorem 21.30 (Nisan’s pseudorandom generator [Nisan??])
For every d there is a c > 0 and a poly(n)-time computable function g :{0, 1}c log2 n →
{0, 1}n

d

such that for every space-bounded machine M that has a configuration
graph of size ≤ nd on inputs of size n:∣∣∣∣∣ Pr

r∈{0,1}nd
[M(x, r) = 1]− Pr

z∈{0,1}c log2 n
[M(x, g(z)) = 1]

∣∣∣∣∣ < 1
10
. (12)

Nisan’s theorem implies that there is a polynomial-time simulation of every algorithm in BPL
using O(log2 n) space. Note that Savitch’s theorem (Theorem [thm:savitch]) also implies that
BPL ⊆ SPACE(log2 n), but the algorithm in Savitch’s proof takes nlogn time. Saks and Zhou [saksZ99]
improved Nisan’s ideas to show that BPL ⊆ SPACE(log1.5 n), which leads many experts to con-
jecture that BPL = L (i.e., randomness does not help logspace computations at all). Indeed, we’ve
seen in Section 21.4 that the famous random-walk algorithm for undirected connectivity can be
derandomized in logspace.

The proof of Theorem 21.30 we present uses randomness extractors and is due to Impagli-
azzo, Nisan, and Wigderson [impagliazzoNW94] (with further improvements by Raz and Rein-
gold [razR99]). Nisan’s original paper did not explicitly use extractors— the definition of extractors
came later and was influenced by results such as Nisan’s. The main intuition behind Nisan’s con-
struction —and also the conjecture BPL = L— is that the logspace machine has one-way access
to the random string and only O(log n) bits of memory. So it can only “remember” O(log n) of the
random bits it has seen. To exploit this we will use the following simple lemma, which shows how
to recycle a random string about which only a little information is known.

Lemma 21.31 (Recycling lemma) Let f : {0, 1}n → {0, 1}s be any function and Ext : {0, 1}n ×
{0, 1}t → {0, 1}m be a (k, ε/2)-extractor, where k = n − (s + 1) − log 1

ε . When X ∈R {0, 1}n,

W ∈R {0, 1}m, z ∈R {0, 1}t, then

f(X) ◦W ≈ε f(X) ◦ Ext(X, z).
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When the lemma is used, s � n and n = m. Thus f(X), which has length s, contains only
a small amount of information about X. The Lemma says that using an appropriate extractor
(whose random seed can have length as small as t = O(s + log(1/ε)) if we use Lemma 21.27) we
can get a new string Ext(X, z) that looks essentially random, even to somebody who knows f(X).
Proof: For v ∈ {0, 1}s we denote by Xv the random variable that is uniformly distributed over
the set f−1(v). Then we can express δ(f(X) ◦W, f(X) ◦ Ext(X, z)) as

=
1
2

∑
v,w

∣∣∣Pr[f(X) = v ∧W = w]− Pr
z

[f(X) = v ∧ Ext(X, z) = w]
∣∣∣

=
∑
v

Pr[f(X) = v] · δ(W,Ext(Xv, z)) (13)

Let V =
{
v : Pr[f(X) = v] ≥ ε/2s+1

}
. If v ∈ V , then we can view Xv as a (n, k)-source, where

k ≥ n − (s + 1) − log 1
ε . Thus by definition of an extractor, Ext(Xv, r) ≈ε/2 W and hence the

contributions from v ∈ V sum to at most ε/2. The contributions from v 6∈ V are upperbounded by∑
v 6∈V Pr[f(X) = v] ≤ 2s × ε

2s+1 = ε/2. The lemma follows. �

Now we describe how the Recycling Lemma is useful in Nisan’s construction. Let M be a
logspace machine. Fix an input of size n and view the graph of all configurations of M on this
input as a leveled branching program. For some d ≥ 1, M has ≤ nd configurations and runs in time
L ≤ nd. Assume without loss of generality —since unneeded random bits can always be ignored—
that it uses 1 random bit at each step. Without loss of generality (by giving M a separate worktape
that maintains a time counter), we can assume that the configuration graph is leveled: it has L
levels, with level i containing configurations obtainable at time i. The first level contains only
the start node and the last level contains two nodes, “accept” and “reject;” every other level has
W = nd nodes. Each level i node has two outgoing edges to level i + 1 nodes and the machine’s
computation at this node involves using the next bit in the random string to pick one of these two
outgoing edges. We sometimes call L the length of the configuration graph and W the width.

start configuration
accept

reject

runs that reach conf. V

conf V

Time

Configuration Graph for Machine Q

Figure 21.2: Configuration graph for machine M

For simplicity we first describe how to reduce the number of random bits by a factor 2. Think
of the L steps of the computation as divided in two halves, each consuming L/2 random bits.
Suppose we use some random string X of length L/2 to run the first half, and the machine is now
at node v in the middle level. The only information known about X at this point is the index of
v, which is a string of length d log n. We may thus view the first half of the branching program
as a (deterministic) function that maps {0, 1}L/2 bits to {0, 1}d logn bits. The Recycling Lemma
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allows us to use a random seed of length O(log n) to recycle X to get an almost-random string
Ext(X, z) of length L/2, which can be used in the second half of the computation. Thus we can run
L steps of computation using L/2 + O(log n) bits, a saving of almost a factor 2. Using a similar
idea recursively, Nisan’s generator runs L steps using O(log n logL) random bits.

Now we formally define Nisan’s generator.
Definition 21.32 (Nisan’s generator)
For some r > 0 let Extk :{0, 1}kr × {0, 1}r → {0, 1}kr be an extractor function for each k ≥ 0. For
every integer k ≥ 0 the associated Nisan generator Gk : {0, 1}kr → {0, 1}2k

is defined recursively
as (where |a| = (k − 1)r, |z| = r)

Gk(a ◦ z) =


z1 (i.e., first bit of z) k = 1

Gk−1(a) ◦Gk−1(Extk−1(a, z)) k > 1

Now we use this generator to prove Theorem 21.30. We only need to show that the probability
that the machine goes from the start node to the “accept” node is similar for truly random strings
and pseudorandom strings. However, we will prove a stronger statement involving intermediate
steps as well.

If nodes u is a node in the configuration graph, and s is a string of length 2k, then we denote by
fu,2k(s) the node that the machine reaches when started in u and its random string is s. Thus if s
comes from some distributionD, we can define a distribution fu,2k(D) on nodes that are 2k levels fur-
ther from u.Theorem 21.33
Let r = O(log n) be such that for each k ≤ d log n, Extk : {0, 1}kr × {0, 1}r → {0, 1}kr is a
(kr − 2d log n, ε)-extractor. For every machine of the type described in the previous paragraphs,
and every node u in its configuration graph:

δ(fu,2k(U2k), fu,2k(Gk(Ukr))) ≤ 3kε, (14)

where Ul denotes the uniform distribution on {0, 1}l.

To prove Theorem 21.30 let u = u0, the start configuration, and 2k = L, the length of the entire
computation. Choose 3kε < 1/10 (say), which means log 1/ε = O(logL) = O(log n). Using the
extractor of Section 21.5.5 as Extk, we can let r = O(log n) and so the seed length kr = O(r logL) =
O(log2 n).
Proof: (Theorem 21.33) Let εk denote the maximum value of the left hand side of (14) over all
machines. The lemma is proved if we can show inductively that εk ≤ 2εk−1 + 2ε. The case k = 1
is trivial. At the inductive step, we need to upper bound the distance between two distributions
fu,2k(D1), fu,2k(D4), for which we introduce two distributions D2,D3 and use triangle inequality:

δ(fu,2k(D1), fu,2k(D4)) ≤
3∑
i=1

δ(fu,2k(Di), fu,2k(Di+1)) . (15)

The distributions will be:

D1 = U2k

D4 = Gk(Ukr)
D2 = U2k−1 ◦Gk−1(U(k−1)r)

D3 = Gk−1(U(k−1)r) ◦Gk−1(U ′(k−1)r) (U,U ′ are identical but independent).

We bound the summands in (15) one by one.
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Claim 1: δ(fu,2k(D1)− fu,2k(D2)) ≤ εk−1.
Denote Pr[fu,2k−1(U2k−1) = w] by pu,w and Pr[fu,2k−1(Gk−1(U(k−1)r)) = w] by qu,w. According to
the inductive assumption,

1
2

∑
w

|pu,w − qu,w| = δ(fu,2k−1(U2k−1), fu,2k−1(Gk−1(U(k−1)r))) ≤ εk−1.

Since D1 = U2k may be viewed as two independent copies of U2k−1 we have

δ(fu,2k(D1), fu,2k(D2)) =
∑
v

1
2

∣∣∣∣∣∑
w

puwpwv −
∑
w

puwqwv

∣∣∣∣∣
where w, v denote nodes 2k−1 and 2k levels respectively from u

=
∑
w

puw
1
2

∑
v

|pwv − qwv|

≤ εk−1 (using inductive hypothesis and
∑
w

puw = 1)

Claim 2: δ(fu,2k(D2), fu,2k(D3)) ≤ εk−1.

The proof is similar to the previous case and is omitted.

Claim 3: δ(fu,2k(D3), fu,2k(D4)) ≤ 2ε.
We use the Recycling Lemma. Let gu :{0, 1}(k−1)r → [1,W ] be defined as gu(a) = fu,2k−1(Gk−1(a)).
(To put it in words, apply the Nisan generator to the seed a and use the result as a random string
for the machine, using u as the start node. Output the node you reach after 2k−1 steps.) Let
X,Y ∈ U(k−1)r and z ∈ Ur. According to the Recycling Lemma,

gu(X) ◦ Y ≈ε gu(X) ◦ Extk−1(X, z),

and then Part 5 of Lemma A.26 implies that the equivalence continues to hold if we apply a
(deterministic) function to the second string on both sides. Thus

gu(X) ◦ gw(Y ) ≈ε gu(X) ◦ gw(Extk−1(X, z))

for all nodes w that are 2k−1 levels after u. The left distribution corresponds to fu,2k(D3) (by which
we mean that Pr[fu,2k(D3) = v] =

∑
w Pr[gu(X) = w ∧ gw(Y ) = v]) and the right one to fu,2k(D4)

and the proof is completed. �
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What have we learned?

• Often we can easily show that a random object has certain attractive proper-
ties, but it’s non-trivial to come up with an explicit construction of an object
with these properties. Yet, once found, such explicit constructions are often
extremely useful.

• The behavior of random walks on a graph is tightly related to the eigenvalues
of its adjacency matrix.

• An expander graph family is a collection of constant-degree graphs whose sec-
ond largest eigenvalue is bounded away from 1. Such families can be shown
to exist using the probabilistic method, but we also know of explicit construc-
tions.

• An `-step random walk on an expander graph is to a certain extend “pseudo-
random” and behaves similarly to ` randomly chosen vertices under certain
measures. This fact has been found useful in a variety of setting, from the ran-
domness efficient error reduction procedure for BPP to the logspace algorithm
for undirected connectivity.

• Extractors are functions that transform a distribution with a large min-entropy
into (close to) the uniform distribution.

• Pseudorandom generators with a “black-box” analysis of their correctness can
be used to construct randomness extractors, even though the latter are based
on no unproven assumptions or lower bounds.

Chapter notes and history

Expanders were first studied by Pinsker [Pinsker73] who defined them and proved their existence
with the first explicit construction given by Margulis [Margulis73]. However, his proof was ex-
istential in the sense that it showed that a certain explicit family of graphs satisfied λ(G) < 1
for every graph G in the family, but gave no explicit bound on that parameter λ. Gabber and
Galil [GabberGa81] improved Margulis’ analysis and gave an explicit bound on λ(G), a bound
that was later improved by Jimbo and Marouka [JimboMa87]. Lubotzky, Phillips and Sarnak
[LubotzkyPhSa88] constructed Ramanujan graphs, that are expander with an optimal depen-
dence between the parameter λ and their degree.

Lemma 21.4 (every connected graph has some spectral gap) is from Alon and Sudakov [AlonSu00]
and is an improved version of a result appearing as Problem 11.29 in [Lovasz07book]. The Alon-
Boppanna lower bound on the second eigenvalue of a d-regular graph was first stated in [Alon86];
a tight bound on the o(1) error term was given in [Nilli04].

The relation between the algebraic (eigenvalue-based) and combinatorial definitions of ex-
panders was developed by Dodziuk, Alon, and Milman in the papers [Dodziuk84, AlonMi84,
AlonMi85, Alon86]. These results can be viewed as a discrete version of a result by Cheeger [Cheeger70]
on compact Riemannian manifolds.

The application of expanders to pseudorandomness was first described by Ajtai, Komlos, and
Szemeredi [AKS87]. Then Cohen and Wigderson [cohenW89] and Impagliazzo-Zuckerman [ImpagliazzoZu89]
showed how to use them to “recycle” random bits as described in Section 21.2.5.

The explicit construction of expanders presented in Sectionr̃efexpand:sec:explicit is due to Rein-
gold, Vadhan and Wigderson [reingoldVW00], although we chose to present it using the replace-
ment product as opposed to the closely related zig-zag product used there. Our analysis of the
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replacement product using Lemma 21.14 follows Rozenman and Vadhan [RozenmanVa05]. The
expansion properties of the replacement product were also analyzed in a particular case of products
of two cubes by Gromov [Gromov83] and for general graphs (in a somewhat different context) by
Martin and Randall [MartinRa00].

The deterministic logspace algorithm for undirected connectivity is due to Reingold [Reingold05].
Trifonov [Trifonov05] proved concurrently and independently the slightly weaker result of an
O(log n log log n)-space algorithm for the same problem.

Hoory, Linial and Wigderson [HooLinWig06] give an excellent introduction to expander
graphs and their computer science applications. The Alon-Spencer book [AlonSp00] also con-
tains several results on expanders.

Weak random sources were first considered in the 1950s by von Neumann [jpb:vonNeumann61].
The second volume of Knuth’s seminal work studies real-life pseudorandom generators and their
limitations. The study of weak random sources as defined here started with Blum [blum84]. Pro-
gressively weaker models were then defined, culminating in the “correct” definition of an (N, k)
source in Zuckerman [zuckerman90]. Zuckerman also observed that this definition generalizes all
models that had been studied to date. (See [srinivasanZ99] for an account of various models con-
sidered by previous researchers.) He also gave the first simulation of probabilistic algorithms with
such sources assuming k = Ω(N). A succession of papers has improved this result; for some refer-
ences, see the paper of Lu, Reingold, Vadhan, and Wigderson [LRVW03], the current champion
in this area (though very likely dethroned by the time this book appears).

The earliest work on extractors —in the guise of leftover hash lemma (Lemma 21.25) of Im-
pagliazzo, Levin, and Luby [ILL89] and a related precursor by Bennett, Brassard and Robert
[BennettBrRo88]— took place in context of cryptography. Nisan [nisan92] then showed that
hashing could be used to obtain provably good pseudorandom generators for logspace. The notion
of an extractor was first formalized by Nisan and Zuckerman [nisanZ96]. Trevisan [trevisan01]
pointed out that any “black-box” construction of a pseudorandom generator gives an extractor,
and in particular used the Nisan-Wigderson generator to construct extractors as described in the
chapter. Since then a sequence of beautiful papers gave explicit constructions of extractors with
improved parameters. In particular Lu, Reingold, Vadhan and Wigderson [LRVW03] were the
first to obtain an extractor with the seed length and output length within a constant factor of the
optimal non-explicit extractor of Theorem 21.24. The current state of the art extractor construction
is by Guruswami, Umans and Vadhan [GuruswamiUmVa07].

Trevisan’s insight about using pseudorandom generators to construct extractors has been greatly
extended. It is now understood that three combinatorial objects studied in three different fields
are very similar: pseudorandom generators (cryptography and derandomization), extractors (weak
random sources) and list-decodable error-correcting codes (coding theory and information theory).
Constructions of any one of these objects often gives constructions of the other two. For a survey,
see Vadhan’s lecture notes [vadhan03] and survey [Vadhan07].

Exercises

21.1. (a) Prove Hölder’s Inequality (see Note 21.1): For every p, q with 1
p + 1

q = 1, ‖u‖p‖v‖q ≥∑n
i=1 |uivi|.

Hint: Use the fact that the log function is concave (has negative second deriva-
tive) implying that for a, b > 0, α log a+ (1− α) log b ≤ log(αa+ (1− α)b).

(b) Prove the inequality (1): |v|1/
√
n ≤ ‖v‖2 ≤

√
|v|1‖v‖∞ for every v.

Hint: For the first inequality, use Hölder’s inequality with p = q = 2 (deriving
the Cauchy-Schwartz Inequality). For the second, use p = 1 and q =∞.
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21.2. Prove that for every n-vertex d-regular graph G, the diameter of G (maximum over all pairs
of distinct vertices i, j in G of the length of the shortest path in G between i and j) is at
most 3n/(d+ 1).

Hint: Show that for every shortest path between two vertices, if we pick any third
vertex in the path then the d+ 1-sized neighborhoods of all the picked vertices are
disjoint.

21.3. Recall that the norm of a matrix A, denoted ‖A‖, is defined as the maximum of ‖Av‖2 for
every unit vector v. Let A be a symmetric stochastic matrix: i.e., A = A† and every row and
column of A has non-negative entries summing up to one. Prove that ‖A‖ ≤ 1.

Hint: first show that ‖A‖ is at most say n2. Then, prove that for every k ≥ 1,
Ak is also stochastic and ‖A2kv‖2 ≥ ‖Akv‖22 using the equality 〈w, Bz〉 = 〈B†w, z〉
and the inequality 〈w, z〉 ≤ ‖w‖2‖z‖2 .

21.4. Let A,B be two n× n matrices.

(a) Prove that ‖A+B‖ ≤ ‖A‖+ ‖B‖.

(b) Prove that ‖AB‖ ≤ ‖A‖‖B‖.

21.5. Let A,B be two symmetric stochastic matrices. Prove that λ(A+B) ≤ λ(A) + λ(B).

21.6. Prove Lemma 21.16.

Hint: Use the fact that if A is a normalized adjacency matrix of a graph and v ⊥ 1
then Av ⊥ 1.

21.7. Recall that the trace of a Matrix A, denoted tr(A), is the sum of the entries along its diagonal.

(a) Prove that if an n× n matrix A has eigenvalues λ1, . . . , λn, then tr(A) =
∑n

i=1 λi.

(b) Prove that if A is a normalized adjacency matrix of an n-vertex graph G, and k ≥ 1,
then tr(Ak) is equal to n times the probability that a if we select a vertex i uniformly
at random and take a k step random walk from i, then we end up back in i.

(c) Prove that for every n-vertex d-degree graph G, λ(G) ≥ 1√
d
(1+o(1)), where o(1) denotes

a term, depending on n and d that tends to 0 as n grows.

Hint: Setting λ = λ(G), use the previous two items to prove that 1+(n−1)λ2 ≥
n/d.

21.8. Let an n, d random graph be an n-vertex graph chosen as follows: choose d random permu-
tations π1, . . . , πd from [n] to [n]. Let the the graph G contains an edge (u, v) for every pair
u, v such that v = πi(u) for some 1 ≤ i ≤ d. Prove that a random n, d graph is an (n, 2d, 1

10)
combinatorial edge expander with probability 1− o(1) (i.e., tending to one with n).

Hint: For every set S ⊆ n with |S| ≤ n/2, try to bound probability that the
number of edges between S and S̄ deviates strongly from its expectation.

21.9. Prove that for every n-vertex d-regular graph, there exists a subset S of n/2 vertices, such
that E(S, S̄) ≤ dn/4. Conclude that there does not exist an (n, d, ρ)-combinatorial edge
expander for ρ > 1/2.
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Hint: Use the probabilistic method - choose S to be a random n/2-sized subset
of the vertices. For every pair of distinct vertices u, v, the probability that u ∈ S
and v ∈ S̄ or vice versa is at most 1/2 (it would be exactly half if we chose S with
replacements). Hence, since there are dn/2 edges in the graph, the expected value
of in E(S, S̄) is at most dn/4.

21.10. Prove the Expander Mixing Lemma (Lemma 21.11).

Hint: You can use Lemma 21.14.

21.11. [Tanner84]

(a) Prove that if p is a probability vector then ‖p‖2
2

is equal to the probability that if i and
j are chosen from p, then i = j.

(b) Prove that if s is the probability vector denoting the uniform distribution over some
subset S of vertices of a graph G with normalized adjacency matrix A, then ‖Ap‖2

2
≥

1/|Γ(S)|, where Γ(S) denotes the set of S’s neighbors.

(c) Prove that if G is an (n, d, λ)-expander graph, and S is a subset of εn vertices, then

|Γ(S)| ≥ |S|
2λ2 ((1− ε)2 − 2ε/λ2)

.

Hint: Show that if s is the uniform distribution over S then ‖As‖2
2
≤ 1/n +

λ2(εn+ 1/n).

A graph where |Γ(S)| ≤ c|S| for every not-too-big set S (say, |S| ≤ n/(10d)) is said
to have vertex expansion c. This exercise shows that graphs with the minimum pos-
sible second eigenvalue 2√

d
(1 + o(1)) have vertex expansion roughly d/4. It is known

that such graphs have in fact vertex expansion roughly d/2 [Kahale??], and there are
counterexamples showing this is tight. In contrast, random d-regular graphs have vertex
expansion (1− o(1))d.

21.12. If G is a graph and S is a subset of G’s vertices then by contracting S we mean transforming
G into a graph H where all of S’s members are replaced by a single vertex s with an edge s v
in H for every edge u v in G where u ∈ S. Prove that if G is an (n, d, λ)-graph, and c ∈ N
divides n, then the graph H obtained by dividing the vertices of G to n/c sets of size c and
contracting all these sets is an (n/c, c2d, λ)-graph.

Hint:Think about how this transformation affects the adjacency matrix of G.

21.13. Prove that for every function Ext : {0, 1}n → {0, 1}m and there exists an (n, n− 1)-source X
and a bit b ∈ {0, 1} such that Pr[Ext(X)1 = b] = 1 (where Ext(X)1 denotes the first bit of
Ext(X)). Prove that this implies that δ(Ext(X), Um) ≥ 1/2.

21.14. Show that there is a constant c > 0 such that if an algorithm runs in time T and requires
m random bits, and m > k + c log T , then it is not possible in general to simulate it in a
blackbox fashion using an (N, k) source and O(log n) truly random bits.

Hint: For each source show that there is a randomized algorithm —it need not be
efficient, since it is being used as a “black box”— for which the simulation fails.

21.15. A flat (N, k) source is a (N, k) source where for every x ∈ {0, 1}N px is either 0 or exactly
2−k.

Show that a source X is an (N, k)-source iff it is a distribution on flat sources. In other words,
there is a set of flat (N, k)-sources X1, X2, . . . and a distribution D on them such that drawing
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a sample of X corresponds to picking one of the Xi’s according to D, and then drawing a
sample from Xi.

Hint: You need to view a distribution as a point in a 2N -dimensional space, and
show that X is in the convex hull of the points that represent all possible flat
sources.

21.16. Use Nisan’s generator to give an algorithm that produces universal traversal sequences for
n-node graphs (see Definition [expand:def:uts]) in nO(logn)-time and O(log2 n) space.

21.17. Suppose Boolean function f is (S, ε)-hard and let D be the distribution on m-bit strings de-
fined by picking inputs x1, x2, . . . , xm uniformly at random and outputting f(x1)f(x2) · · · f(xm).
Show that the statistical distance between D and the uniform distribution is at most εm.

21.18. Prove Lemma 21.25.

21.19. Let A be an n× n matrix with eigenvectors u1, . . . ,un and corresponding values λ1, . . . , λn.
Let B be an m×m matrix with eigenvectors v1, . . . ,vm and corresponding values α1, . . . , αm.
Prove that the matrix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

21.20. Prove that for every two graphs G,G′, λ(G⊗G′) ≤ λ(G) +λ(G′) without using the fact that
every symmetric matrix is diagonalizable.

Hint:Use Lemma 21.14.

21.21. Let G be an n-vertex D-degree graph with ρ combinatorial edge expansion for some ρ > 0.
(That is, for every a subset S of G’s vertices of size at most n/2, the number of edges
between S and its complement is at least ρd|S|.) Let G′ be a D-vertex d-degree graph with
ρ′ combinatorial edge expansion for some ρ′ > 0. Prove that G©R G′ has at least ρ2ρ′/1000
edge expansion.

Hint:Every subset of the replacement product of G and G′ can be thought of as n
subsets of the individual clusters. Treat differently the subsets that take up more
than 1 − ρ/10 portion of their clusters and those that take up less than that. For
the former use the expansion of G, while for the latter use the expansion of G′.
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