Image Fragments in Object Classification: Ullman Et Al, 2002

Mike Onorato
COS 598B
Overview

- Intermediate-complexity features
 - Image “fragments”
 - Used in object classification
Part 1: Image Fragments
Neuroscience Background

- V1: Simple lines, edges or small regions

Neuroscience Background

Neuroscience Background

Neuroscience Background

- **TE:** Shapes similar to a lip or eyebrow

Neuroscience Background

- Anterior IT: Complete or partial object views [Logothetis, et al: View-dependent object recognition in monkeys (1994)]

Neuroscience Background

- Preferred Stimuli: Specific 2D patterns

Neuroscience Background

- Preferred Stimuli: Dependent on training stimuli & Independent of position and orientation

Ullman’s Model

- Preferred Stimuli:
 - Specific 2D patterns
 - Dependent on training stimuli
 - Position and orientation independent

Computer Science Background

- Class-independent small features:
 - Wavelets & Gabor functions

Image Source: [David Bradley, Object Recognition with Informative Features and Linear Classification (2000)]
Image Fragments

- Overlapping patches of images
- Varying sizes, locations and resolutions
Image Fragment Extraction

- Extract many hundreds of features from each image
- Never explain how or exactly how many
Image Fragment Selection

- Step 1: Remove fragments which only appear once
Aside - Ordinal Measures

\[R \]
\[
\begin{array}{ccc}
10 & 30 & 70 \\
20 & 50 & 80 \\
40 & 60 & 100 \\
\end{array}
\]
\[S \]
\[
\begin{array}{ccc}
10 & 30 & 70 \\
28 & 50 & 80 \\
40 & 60 & 120 \\
\end{array}
\]

\[d_m^i = i - \sum_{j=1}^{i} J(s^j \leq i) \]

\[s^i = \pi_k^2, \quad k = \left(\pi_1^{-1}\right)^i \]

Source: [Bhat, D., Nayar, K.: Ordinal Measures for Image Correspondence (1998)]
Image Fragment Comparison

- Difference between fragments F and H:
 \[D(F, H) = k_1 \sum_{i} d_i + k_2 |\alpha_F - \alpha_H| + k_3 |G_F - G_H| \]
 - \(\alpha_X\): orientation
 - \(G_X\): gradient

- Fragments F and H are the same if:
 \[D(F, H) < \text{Threshold} \]
Image Fragment Selection

- Step 1: Remove fragments which only appear once
Image Fragment Selection

- Step 2: Select the 8 most informative fragments

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit</td>
<td>0.20 0.18 0.18 0.17 0.16 0.11 0.10 0.09</td>
</tr>
<tr>
<td>Weight</td>
<td>6.5 5.5 6.45 5.45 3.52 2.9 2.9 2.86</td>
</tr>
</tbody>
</table>
Aside – Information Theory

- **Entropy:**
 - Amount of information transmitted.

 \[
 H(X) = - \sum_{i=1}^{K} P(x_i) \log(P(x_i))
 \]
 Where X is r.v.
Aside – Information Theory

- Mutual Information:
 - The amount of information about X given by Y.

- $I(X,Y) = H(X) - H(X|Y)$
 - Where X and Y are r.v.’s
Step 2: Select the 8 fragments with highest $I(C,F)$

$I(C,F) = H(C) - H(C|F)$

- $C = \text{object is in the class}$
- $F = \text{fragment is in the image}$

<table>
<thead>
<tr>
<th>1st</th>
<th>Merit</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.20</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>2.86</td>
</tr>
</tbody>
</table>
Image Fragment Selection

- Step 3: Select more fragments of the same 8 types

1st								
Merit	0.20	0.18	0.18	0.17	0.16	0.11	0.10	0.09
Weight	6.5	5.5	6.45	5.45	3.52	2.9	2.9	2.86

| 2nd | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|

| 3rd | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|

| 4th | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|
Fragment Selection - Results

- Dataset of 138 faces and 40 cars
- Resultant fragments had intermediate size:
 - Median: 11% object size
 - SD: 16% object size
- All had intermediate size or resolution
Fragment Selection - Results

- Information peaks at intermediate size:
Fragment Selection - Results

- Mutual information peaks at intermediate resolution.
Fragment Selection - Analysis

- These fragments provide best compromise between:
 - Specificity
 - Relative frequency
Part 2: Classification Algorithm
Classification Algorithm

- Extracted fragments from a training set
- Classify objects in new images
Classification Algorithm

- Step 1: Detect fragments
 - Extract candidate fragments H from the image:
 - Size: 0.5-2 times area of F
 - Location: Steps of 3 pixels
 - Resolution: 1x to 1/10x in steps of 1/20x

Example H's
Classification Algorithm

- Step 2: Local search around detected fragments
 - Slight adjustments in size, location and resolution
Classification Algorithm

- Likelihood ratio of the image belonging to class C:
 \[R(F) = \frac{P(F \mid C)}{P(F \mid \bar{C})} \]

- F = fragment detected in image
Classification Algorithm

- Step 3: Sum likelihood ratios

\[\sum_k w_{ik} \max(F_{ik}) > \theta \]

- \(F_{ik} = i\text{-th fragment of } k\text{-th type} \)
- \(w = \log_2(R(F)) \)
- \(\theta = \text{threshold} \)
Classification Algorithm

- To detect faces of varying sizes, test images are rescaled at multiple levels
Classification Performance

- 200 face images & 200 non-face images
- Results:
 - 97% detection
 - 2.1% false detection.
- Comparable to best preexisting systems
Classification Performance

- “Optimal size” fragments:
 - 95.6% face detection
 - 0% false alarms

- Smaller fragments (4% of average face area):
 - 97% face detection
 - 30.4% false alarms

- Larger fragments (33% of average face area):
 - 39% face detection
 - 0% false alarms
Arrangement Specificity
Part 3: Other Things
Other Things

- Matching:

<table>
<thead>
<tr>
<th>Fragments</th>
<th>Novel</th>
<th>Full face</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *No numerical data about the 8 observers’ judgments is provided
Other Things

- Fragments used in back prop neural net.
- Improved classification performance of net.
- *No numerical data is given
Conclusions

- IC fragments are most informative fragments.
- Fragments are good at classification.
- Similar to human visual pathway.
Why Are Fragments Good?

- Similar to cortex
 - Features learned from experience
 - Intermediate complexity
 - Independent of position and some rotation
- Perform global search on large set of potential features.
 - Back-propagation models start from randomly selected features and perform local search.
Why Are Fragments Bad?

- Cannot generalize to large changes in rotation:
 - No 3D information
- Rectangular
Additional Critiques

- As a computer science paper:
 - Qualitative comparison with other methods
 - Test on more difficult object classes

- As a neuroscience paper:
 - Neurons that respond to the extracted fragments?
 - No additional work