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In this lecture, we finish our discussion of support vector machines (SVMs) and begin
talking about the on-line learning model.

1 Finishing Up Support Vector Machines

Previously, we formulated two equivalent ways of finding the output vector of an SVM.
The first formulation seeks a vector v that solves the following constrained maximization
problem:

max δ
s.t. ‖v‖ = 1
∀i : yi(v · xi) ≥ δ.

The second formulation (the “unnormalized” form) eliminates the δ-parameter by drop-
ping the condition that the solution vector w be normalized:

min 1

2
‖w‖2

s.t. ∀i : yi(w · xi) ≥ 1.

We also discussed how to form the dual maximization problem to the above minimization
problem using Lagrange multipliers:

max
∑

i αi − 1

2

∑

i,j αiαjyiyjxi · xj

s.t. ∀i : αi ≥ 0.

The αi’s are the Lagrange multipliers, and the output vector w equals
∑

i αiyixi.
SVM’s can also be used in the case when the data is not linearly separable in R

n. To
do this, we map the data into a higher dimensional space where it does become linearly
separable. For example, in R

2 we could use the mapping Ψ:

Ψ(x) = Ψ(x1, x2) = (1, x1, x2, x1x2, x
2
1, x

2
2).

and then use the SVM algorithm to compute a classifier. For Ψ, this corresponds to using
conic sections as separators in R

2.
However, there are two apparent problems with moving to higher dimensions. The first

is statistical: with more dimensions, we expect that more data will be required. As it
turns out, SVM’s do not suffer from this problem because the VC-dimension is bounded
by 1/δ2 and this does not depend on the number of dimensions of the data. The second
problem is computational: if we use functions like Ψ that add all terms to degree d, then
the number of dimensions grows as O(nd). The number of dimensions quickly becomes so
large that manipulating the data is computationally onerous. However, we can also avoid
this problem. The key observation is that the only operation performed on the data is the
inner product, so if we can choose a mapping into higher dimensions in a clever way we can
calculate the inner products without explicitly considering all the dimensions.



For example, let us modify the function Ψ from before:

Ψ(x) = Ψ(x1, x2) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2).

Notice that the addition of the multiplicative constants does not change what can be rep-
resented by hyperplanes under this mapping. Then if we have two vectors x, u,

Ψ(x)·Ψ(u) = 1+2x1u1+2x2u2+2x1x2u1u2+x2
1u

2
1+x2

2u
2
2 = (1+x1u1+x2u2)

2 = (1+x·u)2 .

Now, instead of computing an inner product in a higher dimensional space, we may compute
an inner product in the original space, add one, and square the result. This leads to big
computational savings when mapping into large dimensional spaces. In particular, we need
never actually examine all the dimensions of the mapping Ψ. Ψ is an example of a kernel
function: it is the kernel K(x,u) = (1 + x · u)d when d = 2. Another example is the
radial basis kernel K(x,u) = exp(−c‖x − u‖2). Kernel functions allow the computation
of inner products in some high-dimensional space (which need not be specified) using only
computations in the lower dimensional space. To use a kernel function in an SVM algorithm,
simply replace every instance of an inner product x · u with the kernel function K(x,u).

We are now finished discussing support vector machine and are ready to move on to a
new learning model—the on-line learning model.

2 The Online Learning Model

First, we will highlight some key aspects of the on-line learning model and contrast them
with the PAC model.

• In the on-line model, the algorithm is presented with an example for which it must
make a prediction. It then gets to see the correct labeling of the example and can
adjust its behavior for future predictions accordingly. By contrast, in the PAC model
the algorithm is given a fixed batch of examples and it computes a fixed hypothesis
used in all future tests.

• The on-line model assumes nothing about the distribution of examples, as opposed to
the statistical assumptions of the PAC model.

• The goal of an on-line learning algorithm is to minimize the number of mistakes made.
This is similar to the PAC model, where the algorithm is attempting to minimize the
probability of a mistake on a randomly chosen test example.

• As a nice bonus, the algorithms and analyses in the on-line model tend to be very
simple and intuitive.

We now consider an instance of the on-line learning model known as learning with expert
advice.

3 Learning with Expert Advice

Suppose we are trying to predict whether the S&P 500 stock index will increase or decrease
on any given day. We could consult the advice of various “experts.” In this case, experts
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might be financial publications, television news networks’ financial analysts, etc. Then we
could synthesize the advice of the experts into a prediction. This is an example of learning
with expert advice—the learning algorithm has a set of experts that make predictions and
the algorithm combines these predictions to form its own prediction. The experts could
be people, other learning algorithms, or functions depending on fixed parameters. Ideally,
the algorithm will be almost as accurate as the best expert. We formalize the situation as
follows:

• There are N experts.

• For each round t = 1, . . . , T ,

– Each expert i makes a prediction ξi ∈ {0, 1}
– The learner (using the experts’ predictions) makes a prediction ŷ ∈ {0, 1}
– The learner observes the actual outcome y ∈ {0, 1}. There is a mistake if ŷ 6= y.

We would like a bound on the number mistakes the learner makes based on the number
of mistakes of the best expert. First we consider a simple special case when there is one
expert who is perfect, making no mistakes at all.

4 Learning with a Perfect Expert and the Halving Algorithm

The idea is to eliminate experts when they make a mistake. The algorithm will predict by
taking a majority vote of the “surviving” experts each round (that is, of experts who have
not been eliminated). To analyze the algorithm, we define

W = (the number of surviving experts).

Then W = N initially. Suppose the learner makes a mistake. Then at least half of the
experts must have been wrong, so W decreases by at least a factor of 2. Then after m
mistakes, W ≤ N/2m. But one expert does not make mistakes, so that expert will never
be eliminated and W ≥ 1. Then 1 ≤ W ≤ N/2m, so m ≤ lg(N). We summarize in the
following theorem:

Theorem 1 Suppose there are N experts and one expert that never errs. Then the halving
algorithm will make at most lg(N) mistakes.

We now relate the halving algorithm to PAC learning. Suppose we have a finite hypoth-
esis space H and a target concept c ∈ H. Suppose we try to discover c using the halving
algorithm. The experts are the hypotheses h ∈ H and the expert c ∈ H is perfect. Then
the theorem tells us that to discover c we need at most lg(N) = lg(|H|) mistakes. Notice
that this is the same as our previous complexity measure of H.

Now we attempt to prove a lower bound on the number of mistakes needed to learn c.
We define

MA(H) = max
adversaries

(#mistakes)

to be the worst-case number of mistakes made by algorithm A in this setting, and

opt(H) = min
A

(MA(H))
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to be the optimal number of mistakes made by the best deterministic algorithm A. Then the
theorem implies Mhalving(H) ≤ lg |H|. We will lower bound opt(H) by the VC-dimension
d of H as follows: Let x1, x2, . . . , xd be a set of points shattered by H. For each round
t = 1, . . . , d, an adversary chooses example xt, calculates A’s prediction ŷ, which is possible
because A is deterministic, then chooses y 6= ŷA. The resulting d labeled examples will be
consistent with some concept in H because the set x1, . . . , xd is shattered by H. Then A
will err on all d examples. Thus opt(H) ≥ d. Summarizing, we have shown that

V Cdim(H) ≤ opt(H) ≤ Mhalving(H) ≤ lg |H|.

We now consider the case when there is no perfect expert.

5 The Weighted Majority Algorithm

The idea is to keep a weight on each expert and decrease the weight of an expert each time
it errs (essentially listening to that expert less in later rounds). Thus we have a parameter
β ∈ [0, 1) and, for each expert, a weight wi. Initially, we set wi = 1. Each round, we
calculate

q0 =
∑

i:ξi=0

wi

and
q1 =

∑

i:ξi=1

wi.

If q1 > q0 we predict ŷ = 1, otherwise we predict ŷ = 0. Then we observe the correct label
y and, for each expert i, if i erred we reset wi to βwi and if i did not err we do nothing.
Then we have the following theorem:

Theorem 1 Suppose there are N experts. Then

(# of mistakes of the learner) ≤ aβ(# of mistakes of the best expert) + cβ lg(N)

where

aβ =
lg(1/β)

lg( 2

1+β
)

and

cβ =
1

lg( 2

1+β
)

Before we give the proof, we give some sample values for the coefficients aβ and cβ .
When β = 1/2, aβ ≈ 2.4 and cβ ≈ 2.4. As β → 0, aβ → ∞ and cβ → 1. As β → 1, aβ → 2
and cβ → ∞. Thus there is a tradeoff between aβ and cβ.

We will prove the theorem by keeping track of W , the total weight of all the experts.
Initially, W = N . Suppose that on some round y = 0 (the argument in the case of y = 1 is
symmetric). Then

Wnew = q1β + q0 = q1β + (W − q1) = W − (1 − β)q1

Suppose there is a mistake: ŷ 6= y. Then q1 ≥ W/2, so

Wnew ≤ W − (1 − β)(W/2) =
1 + β

2
W.
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Then after m mistakes, W ≤
(

1+β
2

)m

N .

Now we prove a lower bound on W . Let Li be the total number of mistakes of expert
i. Then wi = βLi , and so

βLi = wi ≤ W ≤
(1 + β

2

)m

N.

Solving for m, we get

m ≤ Li lg(1/β) + lg(N)

lg 2

1+β

.

This holds for any expert, so we choose i to be the best expert. The bound follows.
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