
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #10
Scribe: Haipeng Zheng March 5, 2008

1 Review of AdaBoost Algorithm

Here is the AdaBoost Algorithm:

input: (x1, y1), . . . , (xm, ym), where xi ∈ X , and yi ∈ {−1,+1};
initialization: D1(i) = 1/m;
for t from 1 to T do

run A on Dt and get ht : X → {−1,+1}, ht ∈ H;

Dt+1(i) = Dt(i)
Zt

e−αtyiht(xi);

where αt = 1
2 ln

(
1−εt

εt

)
, εt = errDt

(ht), and Zt is normalization factor.

end

output: final/combined hypothesis: H(x) = sign(
∑T

t=1 αtht(x)).

2 Upper-bound of Generalization Error of AdaBoost

Last time, we have shown that the training error goes down very quickly with respect to the
number of rounds of boosting T 1. However, what is the performance of the generalization
error of AdaBoost? How do we estimate the upper-bound of the generalization error?

2.1 An Upper-bound Based on VC-dimension

The combined hypothesis has a “weighted-vote” form. Define

G = {all functions of form sign
(∑T

t=1 αtht(x)
)
}.

If H is consistent and |G | is finite, then with probability 1 − δ,

err(H) ≤ O

(
ln |G | + ln(1/δ)

m

)
.

However, since the number of choices of αt is uncountable, |G | is infinite, hence the above
bound is futile. Therefore, we need to use VC-dimension to bound the generalization error.
Using the theorem in the previous two lectures and Homework 3, the bound is of the form

err(H) ≤ êrr(H) + O

(√
ln ΠG (2m) + ln(1/δ)

m

)
. (1)

On the right hand side, the first term êrr(H) addresses the error caused by inconsistent H,

and the second term O
(√

(ln ΠG (2m) + ln(1/δ)) /m
)

is the hard part to prove. Now the

key question is to figure out the growth function ΠG (2m) for the combined hypothesis.

1 cerr(H) ≤ exp
n

−2
P

T

t=1
γ2

t

o



To make our life easier, assume |H| < ∞. In order to bound ΠG (2m), we further assume
that x1, . . . , xm and h1, . . . , hT are fixed. Now α1, . . . , αT are the only variables. Also
notice

∑
t αtht(x) is a linear function, and sign(·) is a threshold function. By Problem 2 in

Homework 2, we know that linear threshold functions in Rn have VC-dimension n.
Define zi = 〈h1(xi), . . . , hT (xi)〉, then

H(xi) = sign(α · zi),

where α = 〈α1, . . . , αT 〉. Since we have m different inputs, and sign(α·zi) has VC-dimension
T , by Sauer’s Lemma, the number of dichotomies, given h1, . . . , hT fixed, is upper-bounded
by

# of dichotomies ≤
T∑

i=0

(
m
i

)
≤
(em

T

)T

.

For each choice of h1, . . . , hT , we have no more than
(

em
T

)T
dichotomies, and we have a

total of at most |H|T choices of h1, . . . , hT . Therefore,

ΠG (m) ≤ |H|T
(em

T

)T

. (2)

Plugging (2) into (1), we get

err(H) ≤ êrr(H) + O

(√
T ln |H| + T ln(m/T ) + ln(1/δ)

m

)
,∀H ∈ G

with probability at least 1 − δ.
In the above expression, we dislike T , the number of weak hypotheses in H. Intuitively,

T increases the complexity of the combined hypothesis. The bound indicates the trend
of generalization error shown in Figure 1. It decreases at first, yet finally increases as T
increases. This is exactly the kind of overfitting behavior we expect since intuitively, the
complexity of the combined hypothesis is equal to its size, which is proportional to the
number of rounds T .
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Figure 1: The upper-bound of training error and test error of AdaBoost.

But what actually happens to AdaBoost for real data?
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number of rounds 5 100 1000

training error 0.0 0.0 0.0
test error 8.4 3.3 3.1

% margins ≤ 0.5 7.7 0.0 0.0
minimum margin 0.14 0.52 0.55

Table 1: The training error, test error and margins of a typical run of AdaBoost Algorithm
with C4.5 Decision Tree as weak learner.

2.2 A Counter-Intuitive Example

Running AdaBoost on the “letter” data set (16,000 training examples and 4,000 test ex-
amples), with C4.5 decision tree as the weak learner, we get results shown in Figure 2 and
Table 1. The training error decreases very fast, and it hits zero after only 5 rounds. Mean-
while, the test error continually decreases as the number of rounds of boosting increases up
to 1000.
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Figure 2: The curves of training error and test error with respect to the number of rounds
of boosting on real data.

The result contradicts our previous argument, since the test error continues to drop
even after training error reaches zero, instead of increasing as T gets larger. In this case, it
seems that Occam’s razor wrongly predicts that “simpler” rules are better. The result is,
after all, good news, because we don’t see overfitting as T increases, but it is also bad news
because this good performance is not explained by our previous theory.

This paradoxical phenomenon is due to the fact that the training error êrr(H) does not
tell the whole story. Not only does one need to know whether hypothesis H is “right or
wrong”, but also the “confidence” of the hypothesis. Actually, even when training error
hits 0, the confidence continues to increase, and high confidence reduces the generalization
error. This intuition is supported by results shown in Figure 3 and Table 1.

But how to measure confidence quantitatively?
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Figure 3: The probability density of letter margin.

3 Generalization Error Based on Margin

3.1 Concept of Margin

We introduce the concept of margin to measure the confidence of a hypothesis quantitatively.
Mathematically, the margin (of a specific example) is defined as

margin(x, y) = yf(x)

= y
∑

t

atht(x)

=
∑

t

atyht(x)

=
∑

t:ht(x)=y

at −
∑

t:ht(x)6=y

at

where y is the correct label of instance x, and at is a normalized version of αt such that
αt ≥ 0 and

∑
t at = 1. The expression

∑
t:ht(x)=y at stands for the weighted fraction of

correct votes, and
∑

t:ht(x)6=y at stands for the weighted fraction of incorrect votes. Margin
is a number between −1 and 1 as shown in Figure 4.
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Figure 4: The definition of margin.

3.2 Margin and Generalization Error of AdaBoost

Empirically, AdaBoost pushes examples of low margin to the right end of the segment in
Figure 4. In order to analyze what is going on, we do a two-part analysis:
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1. Show that AdaBoost increases the margins, i.e. the margin distribution of the training
examples is pushed to the right end of [−1,+1].

2. Large margin in training indicates lower generalization error, independent of the num-
ber of rounds of boosting.

Before we dive into the detailed analysis, we need to clarify some definitions:

• D : target distribution on X × {−1,+1};

• S: a sample;

• PrD [·]: probability over (x, y) ∼ D ;

• PrS [·]: empirical probability, in others words, the fraction of the training set for which
the event holds;

For instance, PrD [h(x) 6= y] = errD(h) is the usual generalization error, and PrS [h(x) 6=
y] = êrr(h) is the usual training error.

In the first part, we show that AdaBoost increases the margins.
Theorem

PrS [yf(x) ≤ θ] ≤
T∏

t=1

[
2

√
ε1−θ
t (1 − εt)1+θ

]
.

The proof is actually only a slight generalization of the training error theorem we proved
last time, so we don’t show it here. It’s worth pointing out that when θ = 0, the theorem
reduces to the bound proven in last lecture. But what does the theorem indicate?

Assume the weak learner can do better than random guessing, say, εt ≤ 1/2 − γ with
γ > 0. Then according to the theorem,

PrS [yf(x) ≤ θ] ≤
(√

(1 − 2γ)1−θ(1 + 2γ)1+θ

)T

.

As long as θ < γ, the term (1 − 2γ)1−θ(1 + 2γ)1+θ is strictly less than 1. Hence, ∀θ < γ,

PrS [yf(x) ≤ θ] → 0 as T → ∞.

This indicates that
lim

T→∞
min

i
yif(xi) ≥ γ

i.e. the number of points with margin less than γ tends to 0. And the better the weak
hypothesis (larger γ), the larger the margin we are going to end up with.

In the second part of the analysis, we show that the generalization error is independent
of the number of rounds of boosting, and larger margin indicates lower generalization error.
First define

• H = weak hypothesis space, and |H| < ∞;

• Convex hull of H, co(H) = {all functions of the form f(x) =
∑T

t=1 atht(x), where at ≥
0,
∑T

t=1 at = 1, T ≥ 1, h1, . . . , hT ∈ H}
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Theorem With probability 1 − δ, ∀f ∈ co(H), ∀θ > 0,

PrD [yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] + O

(
1√
m

√
ln m ln |H|

θ2
+ ln(1/δ)

)
.

Surprisingly, the generalization error is independent of the number of rounds of boosting
T . It only depends on the size of the weak hypothesis space and the margin distance. There
is no penalty for large T at all. Also, from the second term on the right hand side, we know
that larger margin θ indicates lower generalization error.

Proof (Sketch) The basic idea of the proof is: do a “survey” on ht(x) by picking a
random subset. As long as the margin θ is large, the sampled survey can predict the final
result correctly.

Define f(x) =
∑T

t=1 atht(x), then we can approximate f(x) by

g(x) ∈ CN = {f of the form f(x) = 1
N

∑N
t=1 ht(x)},

which comes from a subspace of the space that f(x) is in. First, select ht(x) according to
distribution defined by the at to be gj , i.e. gj = ht with probability at. Average all gj and

get g(x) = 1
N

∑N
j=1 gj(x). Then,

Eg[gj(x)] =

T∑

t=1

atht(x) = f(x).

We then will use Chernoff bounds to show that g(x) and f(x) are close enough to each
other. Then we will apply a uniform convergence theorem to the small class CN to show
the upper-bound of generalization error.
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