1 First thought

We have \(\Pi_H(S) = \{\langle h(X_1), h(X_2), \ldots, h(X_m) \rangle : h \in H \} \), where \(S = \langle X_1, \ldots, X_m \rangle \). And \(\Pi_H(m) = \max_{S:|S|=m} |\Pi_H(S)| \).

We say that \(H \) shatters \(S \) if \(|\Pi_H(S)| = 2^m \). VC-dim(\(H \)) = max\{\|S\| : H \) shatters \(S \}\). If \(|H| < \infty \), then \(d = \text{VC-dim}(H) \leq \log |H| \). In fact, there are only two cases:

- VC-dim = \(\infty \) \(\Rightarrow \) \(\Pi_H(m) = 2^m \), \(\forall m \)
- VC-dim = \(d < \infty \) \(\Rightarrow \) \(\Pi_H(m) = O(m^d) \)

This follows from Sauer’s Lemma, which we now state and prove.

2 Sauer’s Lemma

Lemma: \(\forall H \) with \(d = \text{VC-dim}(H) \),

\[
\Pi_H(m) \leq \sum_{i=0}^{d} \binom{m}{i} = \Phi_d(m) = O(m^d).
\]

In other words, the sum of the binomial is just the number of different ways of choosing at most \(d \) items from a set of size \(m \).

2.1 The Interval Example

In our examination of intervals, we found that the equation for the number of dichotomies possible was of the form:

\[
\Pi_H(m) = \binom{m}{2} + \binom{m}{1} + \binom{m}{0} = \Phi_2(m).
\]

So Sauer’s Lemma is tight in this example.

2.2 Proof of Sauer’s Lemma

First, a few facts and conventions will be used in the proof:

- \(\binom{m}{k} = \binom{m-1}{k} + \binom{m-1}{k-1} \)
- \(\binom{m}{k} = 0 \), if \(k < 0 \) or \(k > m \)

We will prove Sauer’s Lemma by induction on \(m + d \).

Base cases:
Our 2 base cases (for our 2 variables) are:
<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Example Datasets for Proof of Sauers Lemma

- $m = 0$: $\Pi_H(m) = 1 = \sum_{i=0}^{d} \binom{0}{i}$. It is the degenerate labeling of the empty set.
- $d = 0$: $\Pi_H(m) = 1 = \binom{m}{0}$. You can not even shatter one point, so only one behavior possible.

Inductive Step:
Assuming lemma holds for any $m' + d' < m + d$. Given $S = \langle x_1, x_2, \ldots, x_m \rangle$, we want to show $|\Pi_H(S)| \leq \Phi_d(m)$.

The main step of the proof is the construction of two new hypothesis spaces: H_1 and H_2 to which we can apply our induction hypothesis. Here, we have H_1 and H_2 defined on $S' = X' = \{x_1, x_2, \ldots, x_{m-1}\}$, that is, on all the points except x_m. H_1 is constructed by just ignoring behavior on x_m. H_2 is constructed by including only dichotomies that "collapsed" in H_1.

As shown in the example in Table 1, h_1 and h_2, h_4 and h_5 are the same if we ignore x_5, so in each of these pairs, only one of goes to H_1, and the other one goes to H_2.

Notice that if a set is shattered by H_1, then it is also shattered by H. The reason is that we can generate H by using the same x_i’s when we generate H_1. Thus we have

$$\text{VC-dim}(H_1) \leq \text{VC-dim}(H) = d$$

If a set T is shattered by H_2, then $T \cup \{x_m\}$ is shattered by H since there will be two corresponding hypotheses in H with each element of H_2 by adding $x_m = 1$ and $x_m = 0$. Thus, $\text{VC-dim}(H) \geq \text{VC-dim}(H_2) + 1$, which implies

$$\text{VC-dim}(H_2) \leq d - 1.$$

Now, by induction, we have:

$$|H_1| = |\Pi_{H_1}(S')| \leq \Phi_d(m - 1).$$

$$|H_2| = |\Pi_{H_2}(S')| \leq \Phi_{d-1}(m - 1).$$
Then, we have
\[
|\Pi_{\mathcal{H}}(S)| = |\mathcal{H}_1| + |\mathcal{H}_2|
\leq \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i}
= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1}
= \sum_{i=0}^{d} \binom{m}{i}
= \Phi_d(m).
\]

2.3 Upperbound on $\Phi_d(m)$

Claim: $\Phi_d(m) \leq \left(\frac{em}{d}\right)^d$ for $m \geq d \geq 1$.

Proof:

\[
\left(\frac{d}{m}\right)^d \sum_{i=0}^{d} \binom{m}{i} \leq \sum_{i=0}^{d} \left(\frac{d}{m}\right)^i \binom{m}{i}
\leq \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^i 1^{m-i}
= \left(1 + \frac{d}{m}\right)^m
\leq e^d.
\]

Then we have $\Phi_d(m) \leq \left(\frac{em}{d}\right)^d$.

Using this bound, we will have the following results:

With probability of at least $1 - \delta$, $\forall h \in \mathcal{H}$, if h is consistent with m examples, then
\[
\text{err}(h) \leq \frac{2}{m} \left[d \log \left(\frac{em}{d}\right) + \log \left(\frac{1}{\delta}\right) + 1\right].
\]

If $m = O\left(\frac{1}{\epsilon^2} [\ln(\frac{1}{\delta}) + d \ln(\frac{1}{\delta})]\right)$, we have $\text{err}(h) \leq \epsilon$.

3 About the Lower Bound

Now, let’s try to give a lower bound.

3.1 (Bogus) Argument on Lower Bound

Let D be uniform on z_1, z_2, \cdots, z_d. We run A with $m = d/2$ examples labeled arbitrarily, say A outputs h_A. Now let $c \in \mathcal{C}$ be any concept that is consistent with labels in S such that $c(x) \neq h_A(x)$ for $x \notin S$. Then we have $\text{err}(h_A) \geq 1/2$.

But, this is not a valid argument because we cannot choose target concept c after we choose h_A. The PAC model requires that we choose c before we choose S. So, in this argument, we are making c a function of h_A, which is in turn a function of S, which is obviously wrong.
3.2 A Theorem on the Lower Bound

We will instead prove the following:

Theorem: \(\forall A, \exists c \in C, \exists D, \) such that if \(A \) gets \(m = d/2 \) examples, where \(d = \text{VC-dim}(C) \), then

\[
\Pr\left[\text{err}(h_A) > \frac{1}{8}\right] \geq \frac{1}{8}
\]

This means that if given only \(d/2 \) examples, then PAC learning is impossible for \(\epsilon \leq 1/8 \) and \(\delta \leq 1/8 \).