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1 Theorem

1.1 Statement

Thm: Say algorithm A finds a hypothesis hA ∈ H consistent with m examples, where
m ≥ 1

ε
(ln |H| + ln 1

δ
). Then Pr[errD(hA) > ε] ≤ δ.

This theorem has an assumption that the space of hypotheses is finite, and that both the
training examples and testing examples are generated independently according to distribu-
tion D. It gives an upper bound on the number of examples required relative to the error
measure, confidence parameter and the logarithm of the size of hypothesis space. According
to the theorem, simpler H leads to less data needed to learn.

1.2 Proof

Pf: We aim at upper-bounding Pr[hA ε-bad], which is the probability that the hypothesis
generated by A has a performance worse than ε.

Define B = {h ∈ H : h ε-bad}. Note that set B is not random; it is uniquely determined
by the target concept c, the hypothesis class H, the target distribution D, and the value of
ε.

Pr[hA ε-bad] = Pr[hA consistent ∧ hA ε-bad] (1)

≤ Pr[∃h ∈ H : h consistent ∧ ε-bad] (2)

= Pr[∃h ∈ B : h consistent] (3)

= Pr[
∨

h∈B

h consistent] (4)

≤
∑

h∈B

Pr[h consistent] (5)

=
∑

h∈B

Pr[(h(x1) = c(x1) ∧ . . . h(xm) = c(xm))] (6)

=
∑

h∈B

m
∏

i=1

Pr[h(xi) = c(xi)] (7)

≤
∑

h∈B

(1 − ε)m (8)

= |B|(1 − ε)m (9)

≤ |H|(1 − ε)m (10)

≤ |H|e−εm (11)

≤ δ (12)



Equation (2) uses the following fact: Let A,B be two events. If A ⇒ B then Pr[A] ≤
Pr[B]. in this case, the event appearing in the probability in Eq(1) implies the corresponding
event in Eq(2). Also, note that in equation (2), whether or not h is consistent is dependent
on the m training examples; however, whether h is ε-bad or not does not depend on the
training set.

Equation (5) uses the union bound rule. Equation (6) is just the definition of con-
sistency, while (7) follows the independence assumption of the m examples drawn from
distribution. Because h is just one hypothesis from the set B, i.e., h is ε-bad, we then
obtain equation (8). Equation (10) is straightforward, since B ⊆ H.

1.3 Intuition

The theorem tells us that the number of examples needed for learning is related to the size
of the hypothesis space. If we can compress this space, then learning could be easier. It is
a theorem about how much data you need, and it is not about the efficiency of the learning
algorithm, which will be addressed later. When we look at this upper bound of examples,
it is a very loose bound thus quantitatively not good. However, it is qualitatively good,
because it captures a general relation between learning performance and the size of the
hypothesis space (complexity of the rules), and the number of training examples.

If we fix the number of training examples to be m, then with probability (1 − δ),

errD(hA) ≤
ln |H|+ln 1

δ

m
, which is inverse proportional to m.

This informs us that the more data we have, the lower an upper bound of error we
achieve. Secondly, if |H| is large, then the algorithm will tend to find a poor yet consistent
hypothesis from it. So, the more you know about the rules (thus smaller |H|), the better
the algorithm learns.

2 A plausible argument

Now let us try deriving an upper bound for m without using |H|. Say hs is the hypothesis
output by the algorithm A given sample S, which contains m examples.

Pr[err(hs > ε) | hs consistent] =
Pr[err(hs) > ε ∧ hs consistent]

Pr[hs consistent]
(13)

= Pr[err(hs) > ε ∧ hs consistent] (14)

= Pr[hs consistent | err(hs) > ε] Pr[err(hs) > ε] (15)

≤ Pr[hs consistent | err(hs) > ε] (16)

= Pr[(hs(x1) = c(x1) ∧ . . . ∧ hs(xm) = c(xm)) | err(hs) > ε](17)

=

m
∏

i=1

Pr[hs(xi) = c(xi) | err(hs) > ε] (18)

≤ (1 − ε)m (19)

≤ e−εm (20)
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≤ δ, if m ≥
1

ε
ln

1

δ
(21)

The argument goes as follows: Eq(13) uses definition of conditional probability; Eq(14)
is because the denominator in Eq(13) is 1, since hs is assumed to be consistent; Eq(16) is
simply because Pr[err(hs) > ε] ≤ 1; Eq(18) is because the examples xi are independent of
one another; Eq(19) uses the fact that under the condition err(hs) > ε, the probability of
hs(xi) = c(xi) shall be less than 1 − ε.

This argument appears plausible at first sight, but is wrong. The problem is that
the hypothesis hs in the proof is generated from the algorithm using sample S. Since S

is random, hs is also random. If we look back to the proof of the theorem, h is selected
from the ε-bad set B (which is not random). In fact, hs should be consistent with all the m

examples (because it is generated by algorithm A), so Pr[hs(xi) = c(xi)] = 1 for all i. Also,
the independence assumption is no longer valid. Therefore the bound is incorrect.

3 Consistency via PAC

Now we ask the following question: given a PAC algorithm A which learns C by C, and m
examples, can A find a rule c ∈ C consistent with all the examples?

The answer is yes, with probability (1 − δ). Here is how we obtain c. First generate
D from uniform probability on the m examples. Choose ε < 1

m
. Draw random examples

from D, then the algorithm A would output hypothesis h, such that errD(h) ≤ ε < 1
m

with
probability higher than (1 − δ), since each example has weight 1

m
under D , h cannot make

even a single error on the given examples. So h is consistent with all m examples.

4 Behaviors of training samples

Generally speaking, |H| is usually very big. For a sample set S = 〈x1, x2, . . . , xm〉, define
the behavior set ΠH(S) = {〈h(x1), . . . , h(xm)〉 : h ∈ H} consisting of all possible behavior
combinations of the m examples.

Define ΠH(m) = maxS:|S|=m |ΠH(S)|. Obviously ΠH(m) ≤ 2m.

4.1 Example1: positive half lines

Possible behaviors of positive half lines on four training examples are:

− − − −

− − − +

− − + +

− + + +

+ + + +

So there are five possible behaviors. If there are m training examples, then m + 1 possible
behaviors/dichotomies exist, i.e., ΠH(m) = m + 1.
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4.2 Example2: half lines (either positive or negative)

Counting twice as much as the positive case, then subtracting the all –’s and all +’s which
are counted twice, renders ΠH(m) = 2(m + 1) − 2 = 2m.

4.3 Example3: intervals

Select a range on the real axis, classify points within the range as positive, and outside
the range as negative. If there are m points, there will be m + 1 regions to locate the two
borders of the range. We can either choose two different regions

(

m+1
2

)

, or the same region

(1). So ΠH(m) = m(m+1)
2 + 1.

In these three examples, the numbers of all possible behaviors are much smaller than
2m. In the first two cases they are linear in m, and the last case quadratic in m. This
motivates us to try to substitute lnΠH(m) for ln |H| in the theorem.

Also, for any H, we can show that ΠH(m) is either 2m or O(md) polynomial, where
d is called the VC-dimension. Then ln ΠH(m) = d ln m, which will be determined by the
VC-dimension. This is a strong argument, and we will show it next time in class.
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