Keyframe Animation

Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008

Computer Animation

• What is animation?
 ◦ Make objects change over time according to scripted actions

• What is simulation?
 ◦ Predict how objects change over time according to physical laws

Outline

➤ Keyframe animation
 • Adding inverse kinematics
 • Adding dynamics

Keyframe Animation

• Define character poses at specific time steps called “keyframes”

Keyframe Animation

• Interpolate variables describing keyframes to determine poses for character “in-between”
Example: 2-Link Structure
• Two links connected by rotational joints

\[X = (x, y) \]

End-Effector

Example (online)
• Inbetweening:
 - Linear interpolation - usually not enough continuity
 - H&B Figure 16.16

Keyframe Animation
• Inbetweening:
 - Spline interpolation - maybe good enough
 - H&B Figure 16.11

Forward Kinematics
• Animator specifies joint angles: \(\theta_1 \) and \(\theta_2 \)
• Computer finds positions of end-effector: \(X \)

\[X = (l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2), l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)) \]
Keyframe Animation

- Inbetweening:
 - Cubic spline interpolation - maybe good enough
 » May not follow physical laws

Example: Walk Cycle

- Articulated figure:

- Hip joint orientation:

Example: Walk Cycle

- Knee joint orientation:

Example: Walk Cycle

- Ankle joint orientation:
Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaobo Que, CS426, Fall98, Princeton University)

Outline

• Keyframe animation
• Adding inverse kinematics
• Adding dynamics

Example: 2-Link Structure

• What if animator knows position of “end-effector”

Example: 2-Link Structure

Inverse Kinematics

• Animator specifies end-effector positions: X
• Computer finds joint angles: θ_1 and θ_2:

$$\theta_2 = \cos^{-1} \left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2} \right)$$

$$\theta_1 = \frac{-l_1 \sin(\theta_2)x + (l_1 + l_2 \cos(\theta_1))y}{(l_2 \sin(\theta_2)y + (l_1 + l_2 \cos(\theta_2))x}$$

Inverse Kinematics

• End-effector postions can be specified by spline curves

Inverse Kinematics

• Problem for more complex structures
 ° System of equations is usually under-defined
 ° Multiple solutions

Landmarks: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
Inverse Kinematics

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

\[X = (x, y) \]

Example: Ball Boy

Fujito, Milliron, Ngan, & Sanocki
Princeton University

More examples: online

Pixar

Outline

- Keyframe animation
- Adding inverse kinematics
- Adding dynamics

Dynamics

- Simulation of physics insures realism of motion

Spacetime Constraints

- Animator specifies constraints:
 - What the character's physical structure is
 - e.g., articulated figure
 - What the character has to do (keyframes)
 - e.g., jump from here to there within time \(t \)
 - What other physical structures are present
 - e.g., floor to push off and land
 - How the motion should be performed
 - e.g., minimize energy
Spacetime Constraints

- Computer finds the “best” physical motion satisfying constraints
- Example: particle with jet propulsion
 - \(x(t) \) is position of particle at time \(t \)
 - \(f(t) \) is force of jet propulsion at time \(t \)
 - Particle’s equation of motion is:
 \[m\dddot{x} - f - mg = 0 \]
 - Suppose we want to move from \(a \) to \(b \) within \(t_0 \) to \(t_1 \) with minimum jet fuel:
 \[
 \text{Minimize } \int_{t_0}^{t_1} f(t)^2 dt
 \text{ subject to } x(t_0) = a \text{ and } x(t_1) = b
 \]

Witkin & Kass ‘88

Spacetime Constraints

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints
- Challenges:
 - Specifying constraints and objective functions
 - Avoiding local minima during optimization

Witkin & Kass ‘88

Spacetime Constraints

- Adapting motion:

 - Heavier Base

 - Original Jump

Witkin & Kass ‘88

Spacetime Constraints

- Adapting motion:

 - Hurdle

Witkin & Kass ‘88

Spacetime Constraints

- Adapting motion:

 - Ski Jump

Witkin & Kass ‘88
Spacetime Constraints

• Advantages:
 ° Free animator from having to specify details of physically realistic motion with spline curves
 ° Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ° Specifying constraints and objective functions
 ° Avoiding local minima during optimization

Example: Manipulation of Sims.

Summary

• Keyframe animation
 ° Poses specified at key times
 ° In-betweening to fill in the rest

• Incorporating inverse kinematics
 ° Makes keyframes easier to specify

• Incorporating dynamics
 ° Makes animation easier to adapt