Computer Animation

Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008

Syllabus

I. Image processing
II. Modeling
III. Rendering
IV. Animation

Simulation

• Dynamics
 ◦ Considers underlying forces
 ◦ Compute motion from initial conditions and physics

• Kinematics
 ◦ Considers only motion
 ◦ Determined by positions, velocities, accelerations

Dynamics

Passive—no muscles or motors

- model
- particle systems
- leaves
- water spray
- clothing
- state
- numerical integrator
- initial conditions
- user

Active—internal source of energy

- running human
- trotting dog
- swimming fish
- state
- numerical integrator
- forces and torques
- model
- desired behavior
- user

Passive Dynamics

• No muscles or motors
 ◦ Smoke
 ◦ Water
 ◦ Cloth
 ◦ Fire
 ◦ Fireworks
 ◦ Dice

Pixar

University of Illinois

Hodgins

McAllister
Passive Dynamics

• Physical laws
 ◦ Newton's laws
 ◦ Hook's law
 ◦ Etc.

• Physical phenomena
 ◦ Gravity
 ◦ Momentum
 ◦ Friction
 ◦ Collisions
 ◦ Elasticity
 ◦ Fracture

Particle Systems

• A particle is a point mass
 ◦ Mass
 ◦ Position
 ◦ Velocity
 ◦ Forces
 ◦ Color
 ◦ Lifetime

• Use lots of particles to model complex phenomena
 ◦ Keep array of particles
 ◦ Newton's laws

Particle Systems

• For each frame:
 ◦ Create new particles and assign attributes
 ◦ Delete any expired particles
 ◦ Update particles based on attributes and physics
 ◦ Render particles

Creating Particles

• Where to create particles?
 ◦ Predefined source
 ◦ Surface of shape
 ◦ Where particle density is low
 ◦ etc.

Creating Particles

• Where to create particles?
 ◦ Predefined source
 ◦ Surface of shape
 ◦ Where particle density is low
 ◦ etc.

Deleting Particles

• When to delete particles?
 ◦ Predefined sink
 ◦ Surface of shape
 ◦ Where density is high
 ◦ Life span
 ◦ Random
Rendering Particles

- Rendering styles
 - Points
 - Polygons
 - Shapes
 - Trails
 - etc.

- Rendering styles
 - Points
 - Polygons
 - Shapes
 - Trails
 - etc.

Particle Systems

- For each frame:
 - Create new particles and assign attributes
 - Delete any expired particles
 - Update particles based on attributes and physics
 - Render particles

Equations of Motion

- Newton’s Law for a point mass
 - \(f = ma \)

- Computing particle motion requires solving second-order differential equation
 \[
 \ddot{x} = \frac{f(x, \dot{x}, t)}{m}
 \]

- Add variable \(v \) to form coupled first-order differential equations
 \[
 \begin{align*}
 \dot{x} &= v \\
 \dot{v} &= \frac{f}{m}
 \end{align*}
 \]
Solving the Equations of Motion

- Initial value problem
 - Know $p(0)$, $v(0)$, $a(0)$
 - Can compute force at any time and position
 - Compute $p(t)$ by forward integration

- Euler integration
 - $p(t+\Delta t) = p(t) + \Delta t \, v(t)$
 - $v(t+\Delta t) = v(t) + \Delta t \, f(x, t)/m$

- Problem:
 - Accuracy decreases as Δt gets bigger

- Midpoint method (2nd order Runge-Kutta)
 - Compute an Euler step
 - Evaluate f at the midpoint
 - Take an Euler step using midpoint force
 - $v(t+\Delta t) = v(t) + \Delta t \, f(p(t) + 0.5 \times \Delta t \, v(t), t)$

- Adapting step size
 - Compute p_a by taking one step of size h
 - Compute p_b by taking 2 steps of size $h/2$
 - Error = $| p_a - p_b |$
 - Multiply step size by factor ($constant/error$)

Particle System Forces

- Force fields
 - Gravity, wind, pressure

- Viscosity/damping
 - Liquids, drag

- Collisions
 - Environment
 - Other particles

- Other particles
 - Springs between neighboring particles (mesh)
 - Useful for cloth
Particle System Forces

Example: Gravity

Example: Fire

Example: Bouncing Off Wall

Example: Bouncing Off Wall
Example: Bouncing Off Wall

Collision Response

$$V' = V_T - k_s V_N$$

Before

After

Example: Bouncing Off Wall

Contact Force

$$F' = F_T$$

The wall pushes back, cancelling the normal component of F.

(An example of a constraint force.)

Example: Bouncing Off Particles

Example: More Bouncing

Example: Cloth

- Spring-mass mesh
- Hooke’s law

$$f = -k_s (|d| - s) \frac{d}{|d|}$$

q = force

k_s = spring constant

$d = p - q$

$s =$ resting length

Example: Cloth

Breen

Hodgins
Example: Cloth

• Spring-mass mesh

Example: Cloth

• Hooke’s law
 \[f = -k_s(|d| - s) \frac{d}{|d|} \]

 - f = force
 - \(k_s \) = spring constant
 - d = p - q
 - s = resting length

• Damping term
 \[f = -\left(k_s(|d| - s) + k_d \frac{d^2}{|d|^3} \right) \frac{d}{|d|} \]
 \[\dot{d} = p - q \]

Example: Cloth

Summary

• Particle systems
 - Lots of particles
 - Simple physics

• Interesting behaviors
 - Waterfalls
 - Smoke
 - Cloth
 - Flocks

• Solving motion equations
 - Simplest method is Euler integration
 - Better to use adaptive step sizes