3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific

Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

Parametric Surfaces

- Boundary defined by parametric functions:
 - \(x = f_x(u,v) \)
 - \(y = f_y(u,v) \)
 - \(z = f_z(u,v) \)

- Example: ellipsoid
 - \(x = r_c \cos \phi \cos \theta \)
 - \(y = r_c \cos \phi \sin \theta \)
 - \(z = r_s \sin \phi \)

- Example: surface of revolution
 - Take a curve and rotate it about an axis

Parametric & Implicit Surfaces

Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008
Parametric Surfaces

- Example: swept surface
 - Sweep one curve along path of another curve

Demetri Terzopoulos

Parametric Surfaces

- Example: swept surface
 - Making sea shells

Fowler

Parametric Surfaces

- How do we describe arbitrary smooth surfaces with parametric functions?

H&B Figure 10.46

Parametric Patches

- Each patch is defined by blending control points

FvDFH Figure 11.44

Parametric Patches

- Point Q(u,v) on the patch is the tensor product of parametric curves defined by the control points

Watt Figure 6.21

Piecewise Polynomial Parametric Surfaces

- Surface is partitioned into parametric patches:

Watt Figure 6.25

Same ideas as parametric splines!
Parametric Patches

• Point \(Q(u,v) \) on the patch is the tensor product of parametric curves defined by the control points.

\[Q(u,v) = U M \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M^T V^T \]

where \(U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \) and \(V = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} \).

B-Spline Patches

\[Q(u,v) = U M_{b-spline} \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M_{b-spline}^T V \]

where \(M_{b-spline} = \begin{bmatrix} \frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{6} & 0 \end{bmatrix} \).
Bezier Patches

\[Q(u, v) = U \mathbf{M}_{\text{Bezier}} \mathbf{V} \]

- \[\mathbf{M}_{\text{Bezier}} = \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \]

- Properties:
 - Interpolates four corner points
 - Convex hull
 - Local control

Bezier Surfaces

- Continuity constraints are similar to the ones for Bezier splines

B-Spline Patches

\[Q(u, v) = U \mathbf{M}_{\text{B-Spline}} \mathbf{V} \]

- \[\mathbf{M}_{\text{B-Spline}} = \begin{bmatrix}
-\frac{1}{6} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{3} & 0
\end{bmatrix} \]

- \[\mathbf{M}_{\text{B-Spline}} = \begin{bmatrix}
\frac{1}{2} & -1 & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{3} & 0
\end{bmatrix} \]

- \[\mathbf{M}_{\text{B-Spline}} = \begin{bmatrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{3} & 0
\end{bmatrix} \]

- \[\mathbf{M}_{\text{B-Spline}} = \begin{bmatrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{3} & 0
\end{bmatrix} \]
Parametric Surfaces

• Advantages:
 ▪ Easy to enumerate points on surface
 ▪ Possible to describe complex shapes

• Disadvantages:
 ▪ Control mesh must be quadrilaterals
 ▪ Continuity constraints difficult to maintain
 ▪ Hard to find intersections

3D Object Representations

• Points
 ▪ Range image
 ▪ Point cloud

• Surfaces
 ▪ Polygonal mesh
 ▪ Subdivision
 ▪ Parametric
 ▪ Implicit

• Solids
 ▪ Voxel
 ▪ BSP tree
 ▪ CSG
 ▪ Sweep

• High-level structures
 ▪ Scene graph
 ▪ Application specific

Implicit Surfaces

• Represent surface with function over all space

Implicit Surfaces

• Surface defined implicitly by function:
 ▪ \(f(x, y, z) = 0 \) (on surface)
 ▪ \(f(x, y, z) < 0 \) (inside)
 ▪ \(f(x, y, z) > 0 \) (outside)

\[f(x, y) = 0 \text{ on curve} \]
\[f(x, y) < 0 \text{ inside} \]
\[f(x, y) > 0 \text{ outside} \]

Implicit Surfaces

• Normals defined by partial derivatives
 ▪ \(\text{normal}(x, y, z) = (df/dx, df/dy, df/dz) \)
Implicit Surface Properties

(1) Efficient check for whether point is inside
- Evaluate \(f(x,y,z) \) to see if point is inside/outside/on

\[
\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2 + \left(\frac{z}{r_z} \right)^2 - 1 = 0
\]

H&B Figure 10.10

(2) Efficient surface intersections
- Substitute to find intersections
- Ray: \(P = P_0 + tv \)
- Sphere: \(|P - O| ^ 2 - r ^ 2 = 0 \)

Substituting for \(P \), we get:

\[
|P_0 + tv - O| ^ 2 - r ^ 2 = 0
\]

Solve quadratic equation:

\[
a t^2 + bt + c = 0
\]

where:

\[
a = 1 \\
b = 2 V \cdot (P_0 - O) \\
c = |P_0 - O|^2 - r^2 = 0
\]

Implicit Surface Properties

(3) Efficient boolean operations (CSG)
- Union, difference, intersect

Union
Difference

(4) Efficient topology changes
- Surface is not represented explicitly!

Comparison to Parametric Surfaces

- Implicit
 - Efficient intersections & topology changes

- Parametric
 - Efficient "marching" along surface & rendering

\[
p = (\cos(\alpha), \sin(\alpha)), \alpha \in [0, 2\pi]
\]

\[
equangular parametric (transcendental trigonometric) \quad p = (\cos(\alpha), \sin(\alpha)), \alpha \in [0, 2\pi]
\]

\[
non-equangular parametric (rational) \quad p = ((1-t^\alpha)(1+t^\beta), 2t(1+t^\beta)), t \in [-1, 1]
\]

\[
\text{Implicit: } P \cdot P' - 1 = 0
\]
Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Blobby models
 - Skeletons
 - Procedural
 - Samples
 - Variational

Algebraic Surfaces

- Implicit function is polynomial
 - \(f(x,y,z) = ax^d + by^d + cz^d + dx^d-1y + dx^d-1z + dy^d-1x + ... \)
 - \(\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2 + \left(\frac{z}{r_z} \right)^2 - 1 = 0 \)

Algebraic Surfaces

- Higher degree algebraics
 - Cubic
 - Quartic
 - Degree six

Algebraic Surfaces

- Most common form: quadrics
 - \(f(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k \)
 - Examples
 - Sphere
 - Ellipsoid
 - Torus
 - Paraboloid
 - Hyperboloid

Algebraic Surfaces

- Function extends to infinity
 - Must trim to get desired patch (this is difficult!)
Algebraic Surfaces

- Equivalent parametric surface
 - Tensor product patch of degree m and n curves yields algebraic function with degree 2mn

Bicubic patch has degree 18!

Algebraic Surfaces

- Intersection
 - Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324!

Implicit Surface Representations

- How do we define implicit function?
 - Algebras
 - Blobby models
 - Skeletons
 - Procedural
 - Samples
 - Variational

Blobby Models

- Implicit function is sum of spherical basis functions

Blobby Models

- Sum of two blobs

Blobby Models

- Sum of four blobs
Blobby Models: radial basis func

- Blobby molecules
 \[D(r) = a e^{-\alpha r} \]

- Meta balls
 \[D(r) = \begin{cases} \frac{3r^2}{2} - \frac{r^3}{3} & r < a \varepsilon \sigma b \varepsilon b \\ 0 & r \geq a \varepsilon \sigma b \varepsilon b \end{cases} \]

- Soft objects
 \[D(r) = \begin{cases} \frac{4r^6}{9a^6} - \frac{15r^5}{30a^5} + \frac{15r^4}{16a^4} - \frac{11r^3}{30a^3} + \frac{22r^2}{90a^2} - \frac{3r}{10a} & r < a \varepsilon b \varepsilon b \\ 0 & r \geq a \varepsilon b \varepsilon b \end{cases} \]

Blobby Model of Face

(a) \(N = 1 \)
(b) \(N = 2 \)
(c) \(N = 10 \)
(d) \(N = 35 \)
(e) \(N = 70 \)
(f) \(N = 243 \)

Blobby Model of Head

(a) \(N = 1 \)
(b) \(N = 2 \)
(c) \(N = 20 \)
(d) \(N = 60 \)
Blobby Model of Head

Blobby Models

Objects resulting from CSG of implicit soft objects and other primitives

Implicit Surface Representations

• How do we define implicit function?
 o Algebraics
 o Blobby models
 ➔ Skeletons
 o Procedural
 o Samples
 o Variational

Skeletons

• Bulge problem

Skeletons

• Bulge problem

Skeletons

• Convolution surfaces

Bloomenthal
Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Blobby models
 - Skeletons
 - Procedural
 - Samples
 - Variational

Procedural Implicits

- $f(x,y,z)$ is result of procedure
 - Example: Mandelbrot set

Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Blobby models
 - Skeletons
 - Procedural
 - Samples
 - Variational

Sampled Functions

- Most common example: voxels
 - Interpolate samples stored on regular grid
 - Isosurface at $f(x,y,z) = 0$ defines surface

Sampled Functions

- Acquired from simulations or scans
 - Airflow Inside a Thunderstorm (Bob Wilhelmson, University of Illinois at Urbana-Champaign)
 - Visible Human (National Library of Medicine)

Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Blobby models
 - Skeletons
 - Procedural
 - Samples
 - Variational
Variational Implicit Surfaces

Example Implicit Surface

Implicit Surface Summary

- Advantages:
 - Easy to test if point is on surface
 - Easy to compute intersections/unions/differences
 - Easy to handle topological changes

- Disadvantages:
 - Indirect specification of surface
 - Hard to describe sharp features
 - Hard to enumerate points on surface
 » Slow rendering

Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Implicit Surface</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>