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Hierarchical clustering

e Hierarchical clustering is a widely used data analysis tool.

e The idea is to build a binary tree of the data that successively
merges similar groups of points

e Visualizing this tree provides a useful summary of the data
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Hierarchical clusering vs. k-means

e Recall that k-means or k-medoids requires
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Hierarchical clusering vs. k-means

e Recall that k-means or k-medoids requires

e A number of clusters k
e An initial assignment of data to clusters
o A distance measure between data d(x,, Xm)

e Hierarchical clustering only requires a measure of similarity between
groups of data points.
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Agglomerative clustering

o We will talk about agglomerative clustering.
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Agglomerative clustering

o We will talk about agglomerative clustering.
e Algorithm:

@ Place each data point into its own singleton group
® Repeat: iteratively merge the two closest groups
© Until: all the data are merged into a single cluster
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Agglomerative clustering

e Each level of the resulting tree is a segmentation of the data
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Agglomerative clustering

e Each level of the resulting tree is a segmentation of the data

e The algorithm results in a sequence of groupings

e |t is up to the user to choose a "natural” clustering from this
sequence
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o Agglomerative clustering is monotonic



Dendrogram

e Agglomerative clustering is monotonic

e The similarity between merged clusters is monotone decreasing
with the level of the merge.
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Dendrogram

Agglomerative clustering is monotonic

e The similarity between merged clusters is monotone decreasing
with the level of the merge.

Dendrogram: Plot each merge at the (negative) similarity between
the two merged groups

Provides an interpretable visualization of the algorithm and data

Useful summarization tool, part of why hierarchical clustering is
popular
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Dendrogram of example data

Cluster Dendrogram
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Groups that merge at high values relative to the merger values of their

subgroups are candidates for natural clusters. (Tibshirani et al., 2001)
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Group similarity

e Given a distance measure between points, the user has many choices
for how to define intergroup similarity.
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Group similarity

e Given a distance measure between points, the user has many choices

for how to define intergroup similarity.
e Three most popular choices
e Single-linkage: the similarity of the closest pair

ds.(G, H) = iefgijféH dij
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Group similarity

e Given a distance measure between points, the user has many choices
for how to define intergroup similarity.

e Three most popular choices
e Single-linkage: the similarity of the closest pair

ds.(G, H) = ierging dij

e Complete linkage: the similarity of the furthest pair
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Group similarity

e Given a distance measure between points, the user has many choices

for how to define intergroup similarity.
e Three most popular choices
e Single-linkage: the similarity of the closest pair

ds (G, H) = ierging d;

e Complete linkage: the similarity of the furthest pair

deu (G, H) = ierE?'éH di

e Group average: the average similarity between groups

1
dea = Ne N Z Z dij

i€G jeH
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Properties of intergroup similarity

e Single linkage can produce “chaining,” where a sequence of close
observations in different groups cause early merges of those groups
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close groups because of outlier members that are far apart.
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Properties of intergroup similarity

e Single linkage can produce “chaining,” where a sequence of close
observations in different groups cause early merges of those groups

e Complete linkage has the opposite problem. It might not merge
close groups because of outlier members that are far apart.

e Group average represents a natural compromise, but depends on the
scale of the similarities. Applying a monotone transformation to the
similarities can change the results.

D. Blei Clustering 02 10 / 21



e Hierarchical clustering should be treated with caution.



Caveats

e Hierarchical clustering should be treated with caution.

e Different decisions about group similarities can lead to vastly
different dendrograms.
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Caveats

e Hierarchical clustering should be treated with caution.

e Different decisions about group similarities can lead to vastly
different dendrograms.

e The algorithm imposes a hierarchical structure on the data, even
data for which such structure is not appropriate.
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Examples

e “Repeated Observation of Breast Tumor Subtypes in Independent
Gene Expression Data Sets” (Sorlie et al., 2003)
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Examples

e “Repeated Observation of Breast Tumor Subtypes in Independent
Gene Expression Data Sets” (Sorlie et al., 2003)

e Hierarchical clustering of gene expression data lead to new theories

e Later, theories tested in the lab.
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e “The Balance of Roger de Piles” (Studdert-Kennedy and Davenport,
1974)



Examples

e “The Balance of Roger de Piles” (Studdert-Kennedy and Davenport,
1974)

e Roger de Piles rated 57 paintings along different dimensions.
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Examples
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1974)

e Roger de Piles rated 57 paintings along different dimensions.

e These authors cluster them using different methods, including
hierarchical clustering
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Examples

e “The Balance of Roger de Piles” (Studdert-Kennedy and Davenport,
1974)

e Roger de Piles rated 57 paintings along different dimensions.

e These authors cluster them using different methods, including
hierarchical clustering

e They discuss the different clusters. (They are art critics.)
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any interesting speculation it may provoke.”
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Examples

e “Similarity Grouping of Australian Universities” (Stanley and
Reynlds, 1994)
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Examples

e “Similarity Grouping of Australian Universities” (Stanley and
Reynlds, 1994)

e Use hierarchical clustering on Austrailian universities

e Use features such as

# of staff in different departments
e entry scores

funding

evaluations
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CASE 0 5 10 15 20 2
Label seq 1 t { } } }
SYDNEY 8
ol
QUEENSLAND 18
ADELAIDE 20 j—————J
MELBOURNE 27
GRIFFITH L
FLINDERS 21
LA TROBE 26
RHMIT 29
OLD UNI OF TECH 17
SOUTH AUST 22
CENTRAL OLD 1%
JAMES COOK 16 —J
BALLARAT COL 2
UNI OF TECK vIC 31
AUST CATH UNI 1
EDITH COWAN 33
NEW ENGLAND 5
UNI OF CANBERRA 9 :’—l—
Aw 2
UNI OF TECH SO 10 —— ]
NORTHERN TERRIT 13
DEAKIN 25
CURTIN 2 J
MACQUARTE 4
MURDOCK 3% El__}_
NEW SOUTH WALES 6
CHARLES STURT 3
SOUTHERN QLD 19 :’——
SWINBURNE 30
VESTERN SYDNEY 11 -
VOLLONGONG 12
NEWCASTLE 7
UNI OF TAS 23
MONASH 28
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Figure 1. Agglomeration coefficient for DEET and Ashenden data
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e Split values: They notice that there’s no kink and conclude that
there is no cluster structure in Austrailian universities.

e Good: Cautious interpretation of clustering, analysis of clustering
based on multiple subsets of the features.

e Bad: Their conclusions—we can't cluster Australian
universities—ignores all the algorithmic choices that were made.
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Examples

e “Comovement of International Equity Markets: A Taxonomic
Approach” (Panton et al., 1976)
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Examples

“Comovement of International Equity Markets: A Taxonomic
Approach” (Panton et al., 1976)

Data: weekly rates of return for stocks in twelve countries

Run agglometerative clustering year by year

Interpret the structure and examine stability over different time
periods
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Examples

FIGURE I
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Good: Cautious. “This study is only descriptive...A logical subsequent
research area is to explain observed structural properties and the causes
of structural change.”
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