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1 Principal Component Analysis (PCA)

PCA is one method used to reduce the number of features used to represent data. The
benefits of this dimensionality reduction include providing a simpler representation of the
data, reduction in memory, and faster classification. We accomplish by projecting data
from a higher dimension to a lower dimensional manifold such that the error incurred by
reconstructing the data in the higher dimension is minimized.

Figure 1: A plot of x’s in 2D (Rp) space and an example 1D (Rq) space (dashed line) to
which the data can be projected.

An example of this is given by Figure 1, where 2D data can be projected to the 1D
space represented by the dashed line with reasonably small error. In general, we want to
map x ∈ Rp to x̃ ∈ Rq where q < p.

1.1 Idea Behind PCA

• Draw some lower dimensional space. In Figure 1, this is the dashed line.

• Represent each data point by its projection along the line.

In Figure 1, the free parameter is the slope. We draw the line to minimize the distances
to the points. Note that in regression, the distance to the line is vertical, not perpendicular,
as shown by Figure 2.

1.2 PCA Interpretation

PCA can be interpreted in three different ways.

• Maximize the variance of projection along each component.

• Minimize the reconstruction error (ie. the squared distance between the original data
and its “estimate”).

• Some MLE of a parameter in a probabilistic model.



Figure 2: Projecting x to R1. The vertical line is the regression mapping and the perpen-
dicular line is the PCA projection.

1.3 PCA Details

Given data points x1, x2, ..., xn ∈ Rp.
We define the reconstruction of data in Rq to Rp as

f(λ) = µ+ vqλ (1)

In this rank q model, the mean is µ ∈ Rp and vq is a p × q matrix with q orthogonal unit
vectors. Finally, λ ∈ Rq is the low-dimensional data points we are projecting.

Creating a good low-dimensional representation of the data requires that we carefully
choose µ, vq, and λ. One way we can do this is by minimizing the reconstruction error given
by

min
µ,λ1...N ,vq

N∑
n=1

||xn − µ− vqλn|| (2)

In Equation 2, µ is the intercept of the lower space in the higher space. Next, λ1...N

is the Rq coordinate of x, or where x lies on the line in Figure 1. We define the Rp plane
using vq and µ. Last, the quantity inside the sum is the distance between the original data
and the low-dimensional representation reconstruction in the original space (the L2 distance
between the original data and the projection).

Figure 3: Projecting R3 data to R2

We next present an example where the number three is recognized from handwritten
text, as shown in Figure 4. Each image is a datapoint in R256 where a pixel is a dimension
that varies between white and black. When reducing to two dimensions, the principal
components are λ1 and λ2. We can reconstruct a R256 datapoint from a R2 point using

f̂(λ) = + λ1 · + λ2 · (3)
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Figure 4: 130 samples of handwritten threes in a variety of writing styles.

Instead of minimizing the reconstruction error, however, we maximize the variance with the
objective function

min
vq

N∑
n=1

||xn − vqvTq xn||2 (4)

From Equation 2, fitting a PCA (Equation 4) is the same as minimizing the reconstruc-
tion error. The optimal intercept is the sample mean µ∗ = x. Without loss of generality,
assume µ∗ = 0 and x = x − µ∗. The projection vq on xn is λn = vTq xn. Now we find the
principle components vq. These are the places where to put the data to reconstruct with
minimum error. We get the solution to vq using singular value decomposition (SVD).

1.4 SVD

Consider
X = UDV T (5)

where

• X is an N × p matrix.

• U is an N × p orthogonal matrix and the columns of U are linearly independent.

• D is a positive p× p diagonal matrix with d11 ≥ d22 ≥ ... ≥ dpp.

• V T is a p× p orthogonal matrix.

We represent each data point as linear combinations.

x1 = u11d1v̄1 + u12d2v̄2 + ...+ u1pdpv̄p

x2 = u21d2v̄1 + u22d2v̄2 + ...+ u1pdpv̄p

...
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Figure 5:

We can embed x into an orthogonal space via rotation. D scales, V rotates, and U is a
perfect circle.

PCA cuts off SVD at q dimensions. In Figure 6, U is a low dimensional representation.
Examples 3 and 1.3 use q = 2 and N = 130. D reflects the variance so we cut off dimensions
with low variance (remember d11 ≤ d22...). Lastly, V are the principle components.

Figure 6:

2 Factor Analysis

Figure 7: The hidden variable is the point on the hyperplane (line). The observed value is
x, which is dependant on the hidden variable.

Factor analysis is another dimension-reduction technique. The low-dimension represen-
tation of higher-dimensional space is a hyperplane drawn through the high dimensional
space. For each datapoint, we select a point on the hyperplane and choose data from the
Gaussian around that point. These chosen points are observable whereas the point on the
hyperplane is latent.
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2.1 Multivariate Gaussian

This is a Gaussian for p-vectors characterized by

• mean µ, a p-vector

• covariance matrix
∑

, a p× p positive-definite, and symmetric

σij = E[xixj ]− E[xi]E[xj ] (6)

Some observations:

• A data point is x :< x1...xp > vector which is also a random variable.

• If xi, xj are independent, σij = 0

• σij is the covariance between components i and j.

• σii = E[x2
i ]− E[xi]2 = var(xi)

The density function is over vectors of length p.

p(x|µiΣ) =
1

(2π)p/2|Σ1/2|
exp

1
2

(x− µ)TΣ−1(x− µ) (7)

Note that |Σ| = det(Σ) and that (x− µ) is a p-vector.
We now define contours of constant probability density as f(x) = 1

2(x−µ)TΣ−1(x−µ).
These are points where the multivariate Gaussian is the same. They are points on an ellipse.

2.2 MLE

The optimal sample mean, µ̂, is a p-vector and Σ̂ is how often two components are large
together or small together for positive covariances.

µ̂ =
1
N

N∑
n=1

xn (8)

Σ̂ =
1
N

N∑
n=1

(xn − µ̂)(xn − µ̂)T (9)

2.3 Factor Analysis

The parameters are Λ, a q dimensional subspace in p space and a q × q matrix, and Ψ, a
diagonal and positive p× p matrix.

For each data point,
Zn ∼ Nq(

→
0 , I) means it has mean of 0 and each component is an independent Gaussian.

xn ∼ Np(Λz,Ψ) means it has mean of Λz and diagonal covariance matrix Ψ.
In PCA, x = z1λ1 + z2λ2 + ...+ zqλq
In FA, x ˜ N(z1λ1 + ...+ zqλq),Ψ
Fit FA with EM.
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