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1 Logistic regression

We can use the same type of machinery (as linear regression) to do classification. We have the same
graphical model as in linear regressions, as below.

Figure 1: Graphical model for logictic regression (same as the graphical model for linear regres-
sion).

Problems of binary classification with linear regression (in which yn ∼ N(βTx, σ2)): (1) it will
predict something other than 0 or 1, (2) a single outlier can affect greatly the model. (Note: In
classification, yn is either zero or one; not drawn from Gaussian.)

Model y as Bernoulli:

p(y|x) = µ(x)y(1− µ(x))y−1

The parameters to the Bernoulli is a function fo x. What µ should be used?

1. µ(x) = βTx: No, because µ(x) has to be within 0 and 1

2. µ(x) = logistic(βTx): maps R→ (0, 1)

logistic function: µ(x) = 1
1−e−η(x) , η(x) = xTβ

Note:

1. η(x) ∼ ∞, µ(x) ∼ 1



2. η(x) ∼ −∞, µ(x) ∼ 0

This specifies the model: yn ∼ Bernoulli(µ(x)), where µ(x) is defined above.

The logistic regression model implicitly places a ”separating hyperplane” in the input space, and
the conceptual line inficates where the probability to be 1/2 (for binary classification). (Only the
closest data points matter, as in SVM)

The MLE of β focuses on the point near the boundary.

Finding the MLE of β:

β̂ = arg maxβ log p(y1..N |x1..N , β), where data are {(xn, yn)}Nn=1, yn ∈ 0, 1

L = log p(y1..N |x1..N , β)

=
∑N

n=1 log p(yn|xn, β)

=
∑N

n=1 log(µ(xn)yn(1− µ(x))(1−yn)) (We have suppressed the dependence on β)

=
∑N

n=1 ynlogµ(xn) + (1− yn)log(1− µ(xn))

First we calculate the derivative with respective to βi:

dLn
dβi

=
∑N

n−1
dLn
dµ(xn)

dµ(xn)
dβi

term#1: dLn
dµ(xn) = yn

µ(xn) −
(1−yn)

1−µ(xn)

term#2: dµ(xn)
dβi

= dµn
dηn

dηn
dβi

= µn(1− µn)xni

Let µn be µ(xn) = 1

1+e−βT xn

Let ηn be log µn
1−µn (inverse of logistic function)

Then dµn
dηn

= µn(1− µn)

From the term#1 and term#2 above, we have:

dLn
dβi

=
∑N

n=1(
yn
xn
− 1−µn

1−µn )µn(1− µn)xni =
∑N

n=1(yn − µn)xni

E[yn|xn, β] = p(yn = 1|xn, β) = µ(xn) = µn, so dL
dβi

=
∑N

n=1(yn − E[yn|xn, β])xni

Regression: L =
∑N

n=1 ynµn + (1− yn)(1− µn) + ‖β‖q

Connection to Naive Bayes:
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Figure 2: Generative model.

Figure 3: Discriminative model.

Note: When you see more training data, you’ll see more outliers that might affect Naive Bayes,
but not logistic regression or SVM.
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