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We are reviewing the discussion of bias-variance tradeoff that was introduced last week
(in particular for the case of linear regression models, though the concepts apply generally).
Consider the following model, in which the response variable y,, is modeled as a function of
the variable x,, according to the rule:

Yn ~ N(BTxnyoj)' (1)

Note that N(u,0?) is the normal distribution with mean p and standard deviation o,
the input variable x,, is represented in homogeneous coordinates (padded with an additional
dimension whose value is fixed to 1), and (3 is a vector of the same dimensionality as .

Given a specific dataset x;...z,, the maximum likelihood estimate for the parameter B,
which is the choice of 4 in (1) that minimizes training error, can be computed as:

[ = arg mﬁin log p(y1..n|z1.m, B) (2)

We can thus conceptualize B as a random variable. Suppose for the purpose of our
discussion that we know the “true”” (3, and that we will pick the points = in advance.
We can generate a set of response y by finding the points on the line 57z, and use this
point as the mean of a normal distribution from which to draw a random sample. Given
these responses y, we can “discard” (for demonstration purposes) our knowledge of 3, and
compute the maximum-likelihood estimate B from the data. Because of the finite sample
size, B will not be equal to the underlying value (. Instead, B is a random variable that is
governed by a random process. We could retrieve an unlimited number of instantiations of
the random variable B by resampling the dataset.

Suppose now that we have a new data point drawn from the actual distribution, (z,yo =
BTz0) (equivalently, the conditional expectation of yg given xq, E [yo|zo], is Bxo). For a
given estimated parameter B computed from our training dataset, the estimated response
4o of zo is AT zo. We can now contemplate the mean-squared error (MSE) of the prediction:

E [(.@0 - 90)2} = (Bxo — Bxo)” (3)

The previous assumes that we have fixed B , and measures the prediction of ¢ relative to
the true y; when considering (# as an additional random variable, we can also express the
error in the estimator’s prediction of (3, for all possible choices of the data.

MSE(Bzo) = Ep [(ﬁ(@)xo - gxoﬂ (4)
= E[(B0)?] — 2E[Bxo]Bxo + (Bz0)? + E[Bzo)?* — E[Bxo)® (5)
= (El(Br0)?) - E[Bx0]?) + (E[fwo] — fo)? (6)

Note that in (4) we explicitly show that 3 is a function of the data D over which the
expectation is computed, a notation we drop for simplicity in subsequent expressions. We
expand (4) using linearity of expectation, and add zero to produce (5). Combining terms,



we produce (6), the left term of which is the variance of the estimator, and the right term
is the squared bias.

Considering only the squared bias term, the expression E[fx] is the average value of the
mean when estimated over all possible datasets D drawn from the underlying distribution;
the expression (xg is the true mean of that distribution. Originally, statistics was solely
concerned with unbiased estimators, in which the bias term is zero. In particular, the MLE
is the unbiased estimator with minimum variance (this statement is known as the Gauss-
Markov theorem). Ultimately, however, we care about prediction error; as (6) indicates that
error is a function of both bias and variance, we might consider using a biased estimator
that significantly reduces variance relative to the MLE.

One common class of such methods are known under the general term of reqularization,
in which constraints are placed on the potential values of B This encourages smaller and
simpler models, with less possible variance. In particular, the regularization method known
as ridge regression (a type of shrinkage) minimizes mean-squared prediction error subject
to constraints on the norm of

. 1
ridge 3 2 2
Bridge — arg min En i(yn — Bxn)” + A % B; (7)

[ From examination, the meta-parameter A acts as a weight that controls the contribution
of the Lo norm of the vector 3 (correspondingly, its distance to origin in parameter space)
to the total error; with A = 0, the minimization of prediction error is unconstrained, as A
increases the minimization is forced to choose values of 3 with smaller norm (or closer to the
origin, and thereby constraining the range of possible values). The minimization problem
can be shown to remain convex, and therefore has a unique global minimum, for fixed A.
The value of A is found from the data by the method of cross-validation, according to the
following steps:

1. Partition dataset into k subsets, or folds

2. Decide on candidate values of A

3. For each combination of fold and candidate A, estimate 8 on out- of-fold samples.
4. Compute corresponding prediction error for in-fold samples

5. Choose A that minimizes error

In conclusion, the concept of bias-variance tradeoff is fundamental to the Bayesian ap-
proach to statistics: by assuming a prior distribution on the data and parameters, we depart
from the MLE, resulting in an estimator that is inherently biased, although in practice fre-
quently performs significantly better than unbiased estimators.



